Properties

Label 1536.2.j.i.385.3
Level $1536$
Weight $2$
Character 1536.385
Analytic conductor $12.265$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1536,2,Mod(385,1536)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1536, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1536.385");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1536 = 2^{9} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1536.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2650217505\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 385.3
Root \(0.923880 - 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 1536.385
Dual form 1536.2.j.i.1153.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{3} +(0.234633 + 0.234633i) q^{5} -3.08239i q^{7} -1.00000i q^{9} +O(q^{10})\) \(q+(0.707107 - 0.707107i) q^{3} +(0.234633 + 0.234633i) q^{5} -3.08239i q^{7} -1.00000i q^{9} +(-2.61313 - 2.61313i) q^{11} +(-3.28130 + 3.28130i) q^{13} +0.331821 q^{15} -6.52395 q^{17} +(0.613126 - 0.613126i) q^{19} +(-2.17958 - 2.17958i) q^{21} +4.00000i q^{23} -4.88989i q^{25} +(-0.707107 - 0.707107i) q^{27} +(-3.46088 + 3.46088i) q^{29} -6.14386 q^{31} -3.69552 q^{33} +(0.723231 - 0.723231i) q^{35} +(2.57900 + 2.57900i) q^{37} +4.64047i q^{39} -3.92856i q^{41} +(2.77791 + 2.77791i) q^{43} +(0.234633 - 0.234633i) q^{45} -1.65685 q^{47} -2.50114 q^{49} +(-4.61313 + 4.61313i) q^{51} +(0.399418 + 0.399418i) q^{53} -1.22625i q^{55} -0.867091i q^{57} +(4.66364 + 4.66364i) q^{59} +(-10.4689 + 10.4689i) q^{61} -3.08239 q^{63} -1.53981 q^{65} +(9.88989 - 9.88989i) q^{67} +(2.82843 + 2.82843i) q^{69} -7.49207i q^{71} -5.62408i q^{73} +(-3.45768 - 3.45768i) q^{75} +(-8.05468 + 8.05468i) q^{77} +14.9040 q^{79} -1.00000 q^{81} +(-6.61313 + 6.61313i) q^{83} +(-1.53073 - 1.53073i) q^{85} +4.89443i q^{87} -18.1094i q^{89} +(10.1143 + 10.1143i) q^{91} +(-4.34436 + 4.34436i) q^{93} +0.287719 q^{95} -17.0479 q^{97} +(-2.61313 + 2.61313i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 8 q^{5} - 8 q^{13} - 16 q^{19} + 8 q^{29} - 16 q^{31} + 32 q^{35} - 8 q^{37} - 16 q^{43} + 8 q^{45} + 32 q^{47} - 8 q^{49} - 16 q^{51} - 8 q^{53} + 32 q^{59} - 8 q^{61} - 16 q^{63} - 16 q^{65} + 32 q^{67} - 16 q^{75} + 48 q^{79} - 8 q^{81} - 32 q^{83} + 48 q^{91} - 64 q^{95} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1536\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(517\) \(1025\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.707107 0.707107i 0.408248 0.408248i
\(4\) 0 0
\(5\) 0.234633 + 0.234633i 0.104931 + 0.104931i 0.757623 0.652692i \(-0.226360\pi\)
−0.652692 + 0.757623i \(0.726360\pi\)
\(6\) 0 0
\(7\) 3.08239i 1.16503i −0.812818 0.582517i \(-0.802068\pi\)
0.812818 0.582517i \(-0.197932\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −2.61313 2.61313i −0.787887 0.787887i 0.193260 0.981148i \(-0.438094\pi\)
−0.981148 + 0.193260i \(0.938094\pi\)
\(12\) 0 0
\(13\) −3.28130 + 3.28130i −0.910070 + 0.910070i −0.996277 0.0862071i \(-0.972525\pi\)
0.0862071 + 0.996277i \(0.472525\pi\)
\(14\) 0 0
\(15\) 0.331821 0.0856759
\(16\) 0 0
\(17\) −6.52395 −1.58229 −0.791145 0.611629i \(-0.790514\pi\)
−0.791145 + 0.611629i \(0.790514\pi\)
\(18\) 0 0
\(19\) 0.613126 0.613126i 0.140661 0.140661i −0.633270 0.773931i \(-0.718288\pi\)
0.773931 + 0.633270i \(0.218288\pi\)
\(20\) 0 0
\(21\) −2.17958 2.17958i −0.475623 0.475623i
\(22\) 0 0
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 0 0
\(25\) 4.88989i 0.977979i
\(26\) 0 0
\(27\) −0.707107 0.707107i −0.136083 0.136083i
\(28\) 0 0
\(29\) −3.46088 + 3.46088i −0.642670 + 0.642670i −0.951211 0.308541i \(-0.900159\pi\)
0.308541 + 0.951211i \(0.400159\pi\)
\(30\) 0 0
\(31\) −6.14386 −1.10347 −0.551735 0.834020i \(-0.686034\pi\)
−0.551735 + 0.834020i \(0.686034\pi\)
\(32\) 0 0
\(33\) −3.69552 −0.643307
\(34\) 0 0
\(35\) 0.723231 0.723231i 0.122248 0.122248i
\(36\) 0 0
\(37\) 2.57900 + 2.57900i 0.423985 + 0.423985i 0.886573 0.462588i \(-0.153079\pi\)
−0.462588 + 0.886573i \(0.653079\pi\)
\(38\) 0 0
\(39\) 4.64047i 0.743069i
\(40\) 0 0
\(41\) 3.92856i 0.613538i −0.951784 0.306769i \(-0.900752\pi\)
0.951784 0.306769i \(-0.0992479\pi\)
\(42\) 0 0
\(43\) 2.77791 + 2.77791i 0.423627 + 0.423627i 0.886451 0.462823i \(-0.153164\pi\)
−0.462823 + 0.886451i \(0.653164\pi\)
\(44\) 0 0
\(45\) 0.234633 0.234633i 0.0349770 0.0349770i
\(46\) 0 0
\(47\) −1.65685 −0.241677 −0.120839 0.992672i \(-0.538558\pi\)
−0.120839 + 0.992672i \(0.538558\pi\)
\(48\) 0 0
\(49\) −2.50114 −0.357306
\(50\) 0 0
\(51\) −4.61313 + 4.61313i −0.645967 + 0.645967i
\(52\) 0 0
\(53\) 0.399418 + 0.399418i 0.0548642 + 0.0548642i 0.734007 0.679142i \(-0.237648\pi\)
−0.679142 + 0.734007i \(0.737648\pi\)
\(54\) 0 0
\(55\) 1.22625i 0.165348i
\(56\) 0 0
\(57\) 0.867091i 0.114849i
\(58\) 0 0
\(59\) 4.66364 + 4.66364i 0.607155 + 0.607155i 0.942201 0.335047i \(-0.108752\pi\)
−0.335047 + 0.942201i \(0.608752\pi\)
\(60\) 0 0
\(61\) −10.4689 + 10.4689i −1.34040 + 1.34040i −0.444749 + 0.895655i \(0.646707\pi\)
−0.895655 + 0.444749i \(0.853293\pi\)
\(62\) 0 0
\(63\) −3.08239 −0.388345
\(64\) 0 0
\(65\) −1.53981 −0.190989
\(66\) 0 0
\(67\) 9.88989 9.88989i 1.20824 1.20824i 0.236647 0.971596i \(-0.423951\pi\)
0.971596 0.236647i \(-0.0760486\pi\)
\(68\) 0 0
\(69\) 2.82843 + 2.82843i 0.340503 + 0.340503i
\(70\) 0 0
\(71\) 7.49207i 0.889145i −0.895743 0.444573i \(-0.853356\pi\)
0.895743 0.444573i \(-0.146644\pi\)
\(72\) 0 0
\(73\) 5.62408i 0.658248i −0.944287 0.329124i \(-0.893247\pi\)
0.944287 0.329124i \(-0.106753\pi\)
\(74\) 0 0
\(75\) −3.45768 3.45768i −0.399258 0.399258i
\(76\) 0 0
\(77\) −8.05468 + 8.05468i −0.917916 + 0.917916i
\(78\) 0 0
\(79\) 14.9040 1.67683 0.838417 0.545029i \(-0.183481\pi\)
0.838417 + 0.545029i \(0.183481\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −6.61313 + 6.61313i −0.725885 + 0.725885i −0.969797 0.243912i \(-0.921569\pi\)
0.243912 + 0.969797i \(0.421569\pi\)
\(84\) 0 0
\(85\) −1.53073 1.53073i −0.166031 0.166031i
\(86\) 0 0
\(87\) 4.89443i 0.524738i
\(88\) 0 0
\(89\) 18.1094i 1.91959i −0.280705 0.959794i \(-0.590568\pi\)
0.280705 0.959794i \(-0.409432\pi\)
\(90\) 0 0
\(91\) 10.1143 + 10.1143i 1.06026 + 1.06026i
\(92\) 0 0
\(93\) −4.34436 + 4.34436i −0.450490 + 0.450490i
\(94\) 0 0
\(95\) 0.287719 0.0295194
\(96\) 0 0
\(97\) −17.0479 −1.73095 −0.865476 0.500951i \(-0.832984\pi\)
−0.865476 + 0.500951i \(0.832984\pi\)
\(98\) 0 0
\(99\) −2.61313 + 2.61313i −0.262629 + 0.262629i
\(100\) 0 0
\(101\) −8.59379 8.59379i −0.855114 0.855114i 0.135643 0.990758i \(-0.456690\pi\)
−0.990758 + 0.135643i \(0.956690\pi\)
\(102\) 0 0
\(103\) 17.1043i 1.68534i −0.538433 0.842668i \(-0.680984\pi\)
0.538433 0.842668i \(-0.319016\pi\)
\(104\) 0 0
\(105\) 1.02280i 0.0998154i
\(106\) 0 0
\(107\) −12.9932 12.9932i −1.25610 1.25610i −0.952939 0.303162i \(-0.901958\pi\)
−0.303162 0.952939i \(-0.598042\pi\)
\(108\) 0 0
\(109\) 5.54712 5.54712i 0.531318 0.531318i −0.389647 0.920964i \(-0.627403\pi\)
0.920964 + 0.389647i \(0.127403\pi\)
\(110\) 0 0
\(111\) 3.64725 0.346182
\(112\) 0 0
\(113\) −3.65685 −0.344008 −0.172004 0.985096i \(-0.555024\pi\)
−0.172004 + 0.985096i \(0.555024\pi\)
\(114\) 0 0
\(115\) −0.938533 + 0.938533i −0.0875186 + 0.0875186i
\(116\) 0 0
\(117\) 3.28130 + 3.28130i 0.303357 + 0.303357i
\(118\) 0 0
\(119\) 20.1094i 1.84342i
\(120\) 0 0
\(121\) 2.65685i 0.241532i
\(122\) 0 0
\(123\) −2.77791 2.77791i −0.250476 0.250476i
\(124\) 0 0
\(125\) 2.32050 2.32050i 0.207552 0.207552i
\(126\) 0 0
\(127\) 0.638213 0.0566322 0.0283161 0.999599i \(-0.490985\pi\)
0.0283161 + 0.999599i \(0.490985\pi\)
\(128\) 0 0
\(129\) 3.92856 0.345890
\(130\) 0 0
\(131\) −6.72739 + 6.72739i −0.587775 + 0.587775i −0.937028 0.349253i \(-0.886435\pi\)
0.349253 + 0.937028i \(0.386435\pi\)
\(132\) 0 0
\(133\) −1.88989 1.88989i −0.163875 0.163875i
\(134\) 0 0
\(135\) 0.331821i 0.0285586i
\(136\) 0 0
\(137\) 13.9150i 1.18884i 0.804156 + 0.594419i \(0.202618\pi\)
−0.804156 + 0.594419i \(0.797382\pi\)
\(138\) 0 0
\(139\) 0.0546790 + 0.0546790i 0.00463781 + 0.00463781i 0.709422 0.704784i \(-0.248956\pi\)
−0.704784 + 0.709422i \(0.748956\pi\)
\(140\) 0 0
\(141\) −1.17157 + 1.17157i −0.0986642 + 0.0986642i
\(142\) 0 0
\(143\) 17.1489 1.43407
\(144\) 0 0
\(145\) −1.62408 −0.134872
\(146\) 0 0
\(147\) −1.76857 + 1.76857i −0.145870 + 0.145870i
\(148\) 0 0
\(149\) 9.89149 + 9.89149i 0.810342 + 0.810342i 0.984685 0.174343i \(-0.0557801\pi\)
−0.174343 + 0.984685i \(0.555780\pi\)
\(150\) 0 0
\(151\) 18.5828i 1.51225i −0.654430 0.756123i \(-0.727091\pi\)
0.654430 0.756123i \(-0.272909\pi\)
\(152\) 0 0
\(153\) 6.52395i 0.527430i
\(154\) 0 0
\(155\) −1.44155 1.44155i −0.115788 0.115788i
\(156\) 0 0
\(157\) 3.75057 3.75057i 0.299328 0.299328i −0.541423 0.840751i \(-0.682114\pi\)
0.840751 + 0.541423i \(0.182114\pi\)
\(158\) 0 0
\(159\) 0.564862 0.0447964
\(160\) 0 0
\(161\) 12.3296 0.971706
\(162\) 0 0
\(163\) 9.40878 9.40878i 0.736952 0.736952i −0.235035 0.971987i \(-0.575520\pi\)
0.971987 + 0.235035i \(0.0755204\pi\)
\(164\) 0 0
\(165\) −0.867091 0.867091i −0.0675029 0.0675029i
\(166\) 0 0
\(167\) 15.9310i 1.23278i 0.787442 + 0.616389i \(0.211405\pi\)
−0.787442 + 0.616389i \(0.788595\pi\)
\(168\) 0 0
\(169\) 8.53392i 0.656455i
\(170\) 0 0
\(171\) −0.613126 0.613126i −0.0468869 0.0468869i
\(172\) 0 0
\(173\) −13.9462 + 13.9462i −1.06031 + 1.06031i −0.0622466 + 0.998061i \(0.519827\pi\)
−0.998061 + 0.0622466i \(0.980173\pi\)
\(174\) 0 0
\(175\) −15.0726 −1.13938
\(176\) 0 0
\(177\) 6.59539 0.495740
\(178\) 0 0
\(179\) −4.23304 + 4.23304i −0.316392 + 0.316392i −0.847380 0.530987i \(-0.821821\pi\)
0.530987 + 0.847380i \(0.321821\pi\)
\(180\) 0 0
\(181\) −6.93816 6.93816i −0.515709 0.515709i 0.400561 0.916270i \(-0.368815\pi\)
−0.916270 + 0.400561i \(0.868815\pi\)
\(182\) 0 0
\(183\) 14.8052i 1.09444i
\(184\) 0 0
\(185\) 1.21024i 0.0889784i
\(186\) 0 0
\(187\) 17.0479 + 17.0479i 1.24667 + 1.24667i
\(188\) 0 0
\(189\) −2.17958 + 2.17958i −0.158541 + 0.158541i
\(190\) 0 0
\(191\) −19.2900 −1.39578 −0.697888 0.716207i \(-0.745877\pi\)
−0.697888 + 0.716207i \(0.745877\pi\)
\(192\) 0 0
\(193\) −0.155713 −0.0112084 −0.00560422 0.999984i \(-0.501784\pi\)
−0.00560422 + 0.999984i \(0.501784\pi\)
\(194\) 0 0
\(195\) −1.08881 + 1.08881i −0.0779711 + 0.0779711i
\(196\) 0 0
\(197\) 9.33476 + 9.33476i 0.665074 + 0.665074i 0.956572 0.291497i \(-0.0941534\pi\)
−0.291497 + 0.956572i \(0.594153\pi\)
\(198\) 0 0
\(199\) 23.1144i 1.63854i −0.573409 0.819269i \(-0.694380\pi\)
0.573409 0.819269i \(-0.305620\pi\)
\(200\) 0 0
\(201\) 13.9864i 0.986526i
\(202\) 0 0
\(203\) 10.6678 + 10.6678i 0.748733 + 0.748733i
\(204\) 0 0
\(205\) 0.921770 0.921770i 0.0643792 0.0643792i
\(206\) 0 0
\(207\) 4.00000 0.278019
\(208\) 0 0
\(209\) −3.20435 −0.221650
\(210\) 0 0
\(211\) 2.39782 2.39782i 0.165073 0.165073i −0.619737 0.784810i \(-0.712761\pi\)
0.784810 + 0.619737i \(0.212761\pi\)
\(212\) 0 0
\(213\) −5.29769 5.29769i −0.362992 0.362992i
\(214\) 0 0
\(215\) 1.30358i 0.0889034i
\(216\) 0 0
\(217\) 18.9378i 1.28558i
\(218\) 0 0
\(219\) −3.97682 3.97682i −0.268729 0.268729i
\(220\) 0 0
\(221\) 21.4071 21.4071i 1.43999 1.43999i
\(222\) 0 0
\(223\) −10.5326 −0.705316 −0.352658 0.935752i \(-0.614722\pi\)
−0.352658 + 0.935752i \(0.614722\pi\)
\(224\) 0 0
\(225\) −4.88989 −0.325993
\(226\) 0 0
\(227\) 16.5995 16.5995i 1.10175 1.10175i 0.107551 0.994200i \(-0.465699\pi\)
0.994200 0.107551i \(-0.0343010\pi\)
\(228\) 0 0
\(229\) −2.21984 2.21984i −0.146691 0.146691i 0.629947 0.776638i \(-0.283077\pi\)
−0.776638 + 0.629947i \(0.783077\pi\)
\(230\) 0 0
\(231\) 11.3910i 0.749475i
\(232\) 0 0
\(233\) 8.98414i 0.588571i 0.955718 + 0.294285i \(0.0950816\pi\)
−0.955718 + 0.294285i \(0.904918\pi\)
\(234\) 0 0
\(235\) −0.388753 0.388753i −0.0253594 0.0253594i
\(236\) 0 0
\(237\) 10.5387 10.5387i 0.684565 0.684565i
\(238\) 0 0
\(239\) −1.69870 −0.109880 −0.0549400 0.998490i \(-0.517497\pi\)
−0.0549400 + 0.998490i \(0.517497\pi\)
\(240\) 0 0
\(241\) 14.3288 0.923001 0.461500 0.887140i \(-0.347311\pi\)
0.461500 + 0.887140i \(0.347311\pi\)
\(242\) 0 0
\(243\) −0.707107 + 0.707107i −0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) −0.586851 0.586851i −0.0374925 0.0374925i
\(246\) 0 0
\(247\) 4.02371i 0.256022i
\(248\) 0 0
\(249\) 9.35237i 0.592683i
\(250\) 0 0
\(251\) −8.26998 8.26998i −0.521997 0.521997i 0.396177 0.918174i \(-0.370337\pi\)
−0.918174 + 0.396177i \(0.870337\pi\)
\(252\) 0 0
\(253\) 10.4525 10.4525i 0.657143 0.657143i
\(254\) 0 0
\(255\) −2.16478 −0.135564
\(256\) 0 0
\(257\) 3.98642 0.248666 0.124333 0.992241i \(-0.460321\pi\)
0.124333 + 0.992241i \(0.460321\pi\)
\(258\) 0 0
\(259\) 7.94948 7.94948i 0.493957 0.493957i
\(260\) 0 0
\(261\) 3.46088 + 3.46088i 0.214223 + 0.214223i
\(262\) 0 0
\(263\) 11.8635i 0.731534i −0.930706 0.365767i \(-0.880807\pi\)
0.930706 0.365767i \(-0.119193\pi\)
\(264\) 0 0
\(265\) 0.187433i 0.0115139i
\(266\) 0 0
\(267\) −12.8052 12.8052i −0.783669 0.783669i
\(268\) 0 0
\(269\) 15.1236 15.1236i 0.922104 0.922104i −0.0750742 0.997178i \(-0.523919\pi\)
0.997178 + 0.0750742i \(0.0239194\pi\)
\(270\) 0 0
\(271\) 12.0530 0.732165 0.366082 0.930582i \(-0.380699\pi\)
0.366082 + 0.930582i \(0.380699\pi\)
\(272\) 0 0
\(273\) 14.3037 0.865701
\(274\) 0 0
\(275\) −12.7779 + 12.7779i −0.770537 + 0.770537i
\(276\) 0 0
\(277\) 3.40424 + 3.40424i 0.204541 + 0.204541i 0.801942 0.597401i \(-0.203800\pi\)
−0.597401 + 0.801942i \(0.703800\pi\)
\(278\) 0 0
\(279\) 6.14386i 0.367823i
\(280\) 0 0
\(281\) 18.5754i 1.10812i 0.832477 + 0.554059i \(0.186922\pi\)
−0.832477 + 0.554059i \(0.813078\pi\)
\(282\) 0 0
\(283\) 0.993212 + 0.993212i 0.0590403 + 0.0590403i 0.736010 0.676970i \(-0.236707\pi\)
−0.676970 + 0.736010i \(0.736707\pi\)
\(284\) 0 0
\(285\) 0.203448 0.203448i 0.0120512 0.0120512i
\(286\) 0 0
\(287\) −12.1094 −0.714793
\(288\) 0 0
\(289\) 25.5619 1.50364
\(290\) 0 0
\(291\) −12.0547 + 12.0547i −0.706658 + 0.706658i
\(292\) 0 0
\(293\) −19.7131 19.7131i −1.15165 1.15165i −0.986221 0.165432i \(-0.947098\pi\)
−0.165432 0.986221i \(-0.552902\pi\)
\(294\) 0 0
\(295\) 2.18849i 0.127419i
\(296\) 0 0
\(297\) 3.69552i 0.214436i
\(298\) 0 0
\(299\) −13.1252 13.1252i −0.759051 0.759051i
\(300\) 0 0
\(301\) 8.56261 8.56261i 0.493541 0.493541i
\(302\) 0 0
\(303\) −12.1535 −0.698198
\(304\) 0 0
\(305\) −4.91270 −0.281300
\(306\) 0 0
\(307\) 12.3424 12.3424i 0.704418 0.704418i −0.260938 0.965356i \(-0.584032\pi\)
0.965356 + 0.260938i \(0.0840317\pi\)
\(308\) 0 0
\(309\) −12.0946 12.0946i −0.688036 0.688036i
\(310\) 0 0
\(311\) 0.466081i 0.0264290i −0.999913 0.0132145i \(-0.995794\pi\)
0.999913 0.0132145i \(-0.00420643\pi\)
\(312\) 0 0
\(313\) 2.49886i 0.141244i 0.997503 + 0.0706219i \(0.0224984\pi\)
−0.997503 + 0.0706219i \(0.977502\pi\)
\(314\) 0 0
\(315\) −0.723231 0.723231i −0.0407495 0.0407495i
\(316\) 0 0
\(317\) 7.59608 7.59608i 0.426638 0.426638i −0.460843 0.887482i \(-0.652453\pi\)
0.887482 + 0.460843i \(0.152453\pi\)
\(318\) 0 0
\(319\) 18.0875 1.01270
\(320\) 0 0
\(321\) −18.3752 −1.02560
\(322\) 0 0
\(323\) −4.00000 + 4.00000i −0.222566 + 0.222566i
\(324\) 0 0
\(325\) 16.0452 + 16.0452i 0.890029 + 0.890029i
\(326\) 0 0
\(327\) 7.84482i 0.433819i
\(328\) 0 0
\(329\) 5.10707i 0.281562i
\(330\) 0 0
\(331\) −3.72511 3.72511i −0.204751 0.204751i 0.597281 0.802032i \(-0.296248\pi\)
−0.802032 + 0.597281i \(0.796248\pi\)
\(332\) 0 0
\(333\) 2.57900 2.57900i 0.141328 0.141328i
\(334\) 0 0
\(335\) 4.64099 0.253565
\(336\) 0 0
\(337\) 27.4740 1.49660 0.748302 0.663359i \(-0.230870\pi\)
0.748302 + 0.663359i \(0.230870\pi\)
\(338\) 0 0
\(339\) −2.58579 + 2.58579i −0.140441 + 0.140441i
\(340\) 0 0
\(341\) 16.0547 + 16.0547i 0.869410 + 0.869410i
\(342\) 0 0
\(343\) 13.8672i 0.748761i
\(344\) 0 0
\(345\) 1.32729i 0.0714586i
\(346\) 0 0
\(347\) −5.71644 5.71644i −0.306875 0.306875i 0.536821 0.843696i \(-0.319625\pi\)
−0.843696 + 0.536821i \(0.819625\pi\)
\(348\) 0 0
\(349\) −3.51753 + 3.51753i −0.188289 + 0.188289i −0.794956 0.606667i \(-0.792506\pi\)
0.606667 + 0.794956i \(0.292506\pi\)
\(350\) 0 0
\(351\) 4.64047 0.247690
\(352\) 0 0
\(353\) 23.0799 1.22842 0.614210 0.789143i \(-0.289475\pi\)
0.614210 + 0.789143i \(0.289475\pi\)
\(354\) 0 0
\(355\) 1.75789 1.75789i 0.0932990 0.0932990i
\(356\) 0 0
\(357\) 14.2195 + 14.2195i 0.752574 + 0.752574i
\(358\) 0 0
\(359\) 29.2583i 1.54419i 0.635505 + 0.772097i \(0.280792\pi\)
−0.635505 + 0.772097i \(0.719208\pi\)
\(360\) 0 0
\(361\) 18.2482i 0.960429i
\(362\) 0 0
\(363\) 1.87868 + 1.87868i 0.0986051 + 0.0986051i
\(364\) 0 0
\(365\) 1.31959 1.31959i 0.0690707 0.0690707i
\(366\) 0 0
\(367\) −13.1698 −0.687461 −0.343730 0.939068i \(-0.611691\pi\)
−0.343730 + 0.939068i \(0.611691\pi\)
\(368\) 0 0
\(369\) −3.92856 −0.204513
\(370\) 0 0
\(371\) 1.23116 1.23116i 0.0639187 0.0639187i
\(372\) 0 0
\(373\) 10.8120 + 10.8120i 0.559826 + 0.559826i 0.929258 0.369432i \(-0.120448\pi\)
−0.369432 + 0.929258i \(0.620448\pi\)
\(374\) 0 0
\(375\) 3.28168i 0.169465i
\(376\) 0 0
\(377\) 22.7124i 1.16975i
\(378\) 0 0
\(379\) −4.53580 4.53580i −0.232988 0.232988i 0.580951 0.813939i \(-0.302681\pi\)
−0.813939 + 0.580951i \(0.802681\pi\)
\(380\) 0 0
\(381\) 0.451285 0.451285i 0.0231200 0.0231200i
\(382\) 0 0
\(383\) 34.0721 1.74100 0.870501 0.492167i \(-0.163795\pi\)
0.870501 + 0.492167i \(0.163795\pi\)
\(384\) 0 0
\(385\) −3.77979 −0.192636
\(386\) 0 0
\(387\) 2.77791 2.77791i 0.141209 0.141209i
\(388\) 0 0
\(389\) −22.9941 22.9941i −1.16584 1.16584i −0.983174 0.182671i \(-0.941526\pi\)
−0.182671 0.983174i \(-0.558474\pi\)
\(390\) 0 0
\(391\) 26.0958i 1.31972i
\(392\) 0 0
\(393\) 9.51397i 0.479916i
\(394\) 0 0
\(395\) 3.49698 + 3.49698i 0.175952 + 0.175952i
\(396\) 0 0
\(397\) 3.17438 3.17438i 0.159318 0.159318i −0.622947 0.782264i \(-0.714065\pi\)
0.782264 + 0.622947i \(0.214065\pi\)
\(398\) 0 0
\(399\) −2.67271 −0.133803
\(400\) 0 0
\(401\) 3.21024 0.160312 0.0801558 0.996782i \(-0.474458\pi\)
0.0801558 + 0.996782i \(0.474458\pi\)
\(402\) 0 0
\(403\) 20.1599 20.1599i 1.00423 1.00423i
\(404\) 0 0
\(405\) −0.234633 0.234633i −0.0116590 0.0116590i
\(406\) 0 0
\(407\) 13.4785i 0.668104i
\(408\) 0 0
\(409\) 14.0456i 0.694511i 0.937771 + 0.347255i \(0.112886\pi\)
−0.937771 + 0.347255i \(0.887114\pi\)
\(410\) 0 0
\(411\) 9.83938 + 9.83938i 0.485341 + 0.485341i
\(412\) 0 0
\(413\) 14.3752 14.3752i 0.707356 0.707356i
\(414\) 0 0
\(415\) −3.10332 −0.152336
\(416\) 0 0
\(417\) 0.0773278 0.00378676
\(418\) 0 0
\(419\) −19.0521 + 19.0521i −0.930754 + 0.930754i −0.997753 0.0669993i \(-0.978657\pi\)
0.0669993 + 0.997753i \(0.478657\pi\)
\(420\) 0 0
\(421\) 4.04598 + 4.04598i 0.197189 + 0.197189i 0.798794 0.601605i \(-0.205472\pi\)
−0.601605 + 0.798794i \(0.705472\pi\)
\(422\) 0 0
\(423\) 1.65685i 0.0805590i
\(424\) 0 0
\(425\) 31.9014i 1.54745i
\(426\) 0 0
\(427\) 32.2692 + 32.2692i 1.56162 + 1.56162i
\(428\) 0 0
\(429\) 12.1261 12.1261i 0.585455 0.585455i
\(430\) 0 0
\(431\) −27.9547 −1.34653 −0.673265 0.739401i \(-0.735109\pi\)
−0.673265 + 0.739401i \(0.735109\pi\)
\(432\) 0 0
\(433\) 1.81151 0.0870556 0.0435278 0.999052i \(-0.486140\pi\)
0.0435278 + 0.999052i \(0.486140\pi\)
\(434\) 0 0
\(435\) −1.14840 + 1.14840i −0.0550614 + 0.0550614i
\(436\) 0 0
\(437\) 2.45250 + 2.45250i 0.117319 + 0.117319i
\(438\) 0 0
\(439\) 4.45985i 0.212857i 0.994320 + 0.106429i \(0.0339415\pi\)
−0.994320 + 0.106429i \(0.966058\pi\)
\(440\) 0 0
\(441\) 2.50114i 0.119102i
\(442\) 0 0
\(443\) −1.85295 1.85295i −0.0880365 0.0880365i 0.661717 0.749754i \(-0.269828\pi\)
−0.749754 + 0.661717i \(0.769828\pi\)
\(444\) 0 0
\(445\) 4.24906 4.24906i 0.201425 0.201425i
\(446\) 0 0
\(447\) 13.9887 0.661642
\(448\) 0 0
\(449\) 27.9787 1.32040 0.660199 0.751091i \(-0.270472\pi\)
0.660199 + 0.751091i \(0.270472\pi\)
\(450\) 0 0
\(451\) −10.2658 + 10.2658i −0.483398 + 0.483398i
\(452\) 0 0
\(453\) −13.1400 13.1400i −0.617372 0.617372i
\(454\) 0 0
\(455\) 4.74628i 0.222509i
\(456\) 0 0
\(457\) 14.3933i 0.673291i 0.941631 + 0.336646i \(0.109292\pi\)
−0.941631 + 0.336646i \(0.890708\pi\)
\(458\) 0 0
\(459\) 4.61313 + 4.61313i 0.215322 + 0.215322i
\(460\) 0 0
\(461\) 5.50724 5.50724i 0.256498 0.256498i −0.567130 0.823628i \(-0.691946\pi\)
0.823628 + 0.567130i \(0.191946\pi\)
\(462\) 0 0
\(463\) 15.6642 0.727977 0.363989 0.931403i \(-0.381415\pi\)
0.363989 + 0.931403i \(0.381415\pi\)
\(464\) 0 0
\(465\) −2.03866 −0.0945408
\(466\) 0 0
\(467\) 3.73002 3.73002i 0.172605 0.172605i −0.615518 0.788123i \(-0.711053\pi\)
0.788123 + 0.615518i \(0.211053\pi\)
\(468\) 0 0
\(469\) −30.4845 30.4845i −1.40764 1.40764i
\(470\) 0 0
\(471\) 5.30411i 0.244400i
\(472\) 0 0
\(473\) 14.5181i 0.667541i
\(474\) 0 0
\(475\) −2.99812 2.99812i −0.137563 0.137563i
\(476\) 0 0
\(477\) 0.399418 0.399418i 0.0182881 0.0182881i
\(478\) 0 0
\(479\) −11.9310 −0.545141 −0.272571 0.962136i \(-0.587874\pi\)
−0.272571 + 0.962136i \(0.587874\pi\)
\(480\) 0 0
\(481\) −16.9250 −0.771712
\(482\) 0 0
\(483\) 8.71832 8.71832i 0.396697 0.396697i
\(484\) 0 0
\(485\) −4.00000 4.00000i −0.181631 0.181631i
\(486\) 0 0
\(487\) 37.1782i 1.68470i 0.538928 + 0.842352i \(0.318830\pi\)
−0.538928 + 0.842352i \(0.681170\pi\)
\(488\) 0 0
\(489\) 13.3060i 0.601719i
\(490\) 0 0
\(491\) 17.7470 + 17.7470i 0.800911 + 0.800911i 0.983238 0.182327i \(-0.0583628\pi\)
−0.182327 + 0.983238i \(0.558363\pi\)
\(492\) 0 0
\(493\) 22.5786 22.5786i 1.01689 1.01689i
\(494\) 0 0
\(495\) −1.22625 −0.0551159
\(496\) 0 0
\(497\) −23.0935 −1.03588
\(498\) 0 0
\(499\) −23.2255 + 23.2255i −1.03972 + 1.03972i −0.0405384 + 0.999178i \(0.512907\pi\)
−0.999178 + 0.0405384i \(0.987093\pi\)
\(500\) 0 0
\(501\) 11.2649 + 11.2649i 0.503279 + 0.503279i
\(502\) 0 0
\(503\) 8.35327i 0.372454i 0.982507 + 0.186227i \(0.0596260\pi\)
−0.982507 + 0.186227i \(0.940374\pi\)
\(504\) 0 0
\(505\) 4.03278i 0.179456i
\(506\) 0 0
\(507\) −6.03439 6.03439i −0.267997 0.267997i
\(508\) 0 0
\(509\) −6.60287 + 6.60287i −0.292667 + 0.292667i −0.838133 0.545466i \(-0.816353\pi\)
0.545466 + 0.838133i \(0.316353\pi\)
\(510\) 0 0
\(511\) −17.3356 −0.766882
\(512\) 0 0
\(513\) −0.867091 −0.0382830
\(514\) 0 0
\(515\) 4.01323 4.01323i 0.176844 0.176844i
\(516\) 0 0
\(517\) 4.32957 + 4.32957i 0.190414 + 0.190414i
\(518\) 0 0
\(519\) 19.7229i 0.865737i
\(520\) 0 0
\(521\) 4.38287i 0.192017i 0.995381 + 0.0960084i \(0.0306076\pi\)
−0.995381 + 0.0960084i \(0.969392\pi\)
\(522\) 0 0
\(523\) 6.52567 + 6.52567i 0.285348 + 0.285348i 0.835237 0.549890i \(-0.185330\pi\)
−0.549890 + 0.835237i \(0.685330\pi\)
\(524\) 0 0
\(525\) −10.6579 + 10.6579i −0.465150 + 0.465150i
\(526\) 0 0
\(527\) 40.0822 1.74601
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 4.66364 4.66364i 0.202385 0.202385i
\(532\) 0 0
\(533\) 12.8908 + 12.8908i 0.558362 + 0.558362i
\(534\) 0 0
\(535\) 6.09728i 0.263608i
\(536\) 0 0
\(537\) 5.98642i 0.258333i
\(538\) 0 0
\(539\) 6.53580 + 6.53580i 0.281517 + 0.281517i
\(540\) 0 0
\(541\) −26.1418 + 26.1418i −1.12392 + 1.12392i −0.132776 + 0.991146i \(0.542389\pi\)
−0.991146 + 0.132776i \(0.957611\pi\)
\(542\) 0 0
\(543\) −9.81204 −0.421075
\(544\) 0 0
\(545\) 2.60308 0.111504
\(546\) 0 0
\(547\) −28.7643 + 28.7643i −1.22987 + 1.22987i −0.265863 + 0.964011i \(0.585657\pi\)
−0.964011 + 0.265863i \(0.914343\pi\)
\(548\) 0 0
\(549\) 10.4689 + 10.4689i 0.446801 + 0.446801i
\(550\) 0 0
\(551\) 4.24392i 0.180797i
\(552\) 0 0
\(553\) 45.9401i 1.95357i
\(554\) 0 0
\(555\) 0.855767 + 0.855767i 0.0363253 + 0.0363253i
\(556\) 0 0
\(557\) −28.0144 + 28.0144i −1.18701 + 1.18701i −0.209119 + 0.977890i \(0.567060\pi\)
−0.977890 + 0.209119i \(0.932940\pi\)
\(558\) 0 0
\(559\) −18.2303 −0.771061
\(560\) 0 0
\(561\) 24.1094 1.01790
\(562\) 0 0
\(563\) 14.7142 14.7142i 0.620128 0.620128i −0.325436 0.945564i \(-0.605511\pi\)
0.945564 + 0.325436i \(0.105511\pi\)
\(564\) 0 0
\(565\) −0.858019 0.858019i −0.0360971 0.0360971i
\(566\) 0 0
\(567\) 3.08239i 0.129448i
\(568\) 0 0
\(569\) 15.7585i 0.660632i −0.943870 0.330316i \(-0.892845\pi\)
0.943870 0.330316i \(-0.107155\pi\)
\(570\) 0 0
\(571\) −17.4593 17.4593i −0.730649 0.730649i 0.240100 0.970748i \(-0.422820\pi\)
−0.970748 + 0.240100i \(0.922820\pi\)
\(572\) 0 0
\(573\) −13.6401 + 13.6401i −0.569823 + 0.569823i
\(574\) 0 0
\(575\) 19.5596 0.815691
\(576\) 0 0
\(577\) −21.0924 −0.878090 −0.439045 0.898465i \(-0.644683\pi\)
−0.439045 + 0.898465i \(0.644683\pi\)
\(578\) 0 0
\(579\) −0.110105 + 0.110105i −0.00457582 + 0.00457582i
\(580\) 0 0
\(581\) 20.3842 + 20.3842i 0.845681 + 0.845681i
\(582\) 0 0
\(583\) 2.08746i 0.0864536i
\(584\) 0 0
\(585\) 1.53981i 0.0636631i
\(586\) 0 0
\(587\) −10.1776 10.1776i −0.420075 0.420075i 0.465154 0.885230i \(-0.345999\pi\)
−0.885230 + 0.465154i \(0.845999\pi\)
\(588\) 0 0
\(589\) −3.76696 + 3.76696i −0.155215 + 0.155215i
\(590\) 0 0
\(591\) 13.2014 0.543031
\(592\) 0 0
\(593\) −22.1931 −0.911360 −0.455680 0.890144i \(-0.650604\pi\)
−0.455680 + 0.890144i \(0.650604\pi\)
\(594\) 0 0
\(595\) −4.71832 + 4.71832i −0.193432 + 0.193432i
\(596\) 0 0
\(597\) −16.3444 16.3444i −0.668930 0.668930i
\(598\) 0 0
\(599\) 37.4366i 1.52962i −0.644256 0.764810i \(-0.722833\pi\)
0.644256 0.764810i \(-0.277167\pi\)
\(600\) 0 0
\(601\) 1.68963i 0.0689215i 0.999406 + 0.0344608i \(0.0109714\pi\)
−0.999406 + 0.0344608i \(0.989029\pi\)
\(602\) 0 0
\(603\) −9.88989 9.88989i −0.402748 0.402748i
\(604\) 0 0
\(605\) −0.623386 + 0.623386i −0.0253442 + 0.0253442i
\(606\) 0 0
\(607\) 36.8841 1.49708 0.748539 0.663090i \(-0.230755\pi\)
0.748539 + 0.663090i \(0.230755\pi\)
\(608\) 0 0
\(609\) 15.0866 0.611338
\(610\) 0 0
\(611\) 5.43664 5.43664i 0.219943 0.219943i
\(612\) 0 0
\(613\) 9.51753 + 9.51753i 0.384409 + 0.384409i 0.872688 0.488278i \(-0.162375\pi\)
−0.488278 + 0.872688i \(0.662375\pi\)
\(614\) 0 0
\(615\) 1.30358i 0.0525654i
\(616\) 0 0
\(617\) 20.3160i 0.817891i 0.912559 + 0.408946i \(0.134103\pi\)
−0.912559 + 0.408946i \(0.865897\pi\)
\(618\) 0 0
\(619\) −27.5969 27.5969i −1.10921 1.10921i −0.993254 0.115960i \(-0.963006\pi\)
−0.115960 0.993254i \(-0.536994\pi\)
\(620\) 0 0
\(621\) 2.82843 2.82843i 0.113501 0.113501i
\(622\) 0 0
\(623\) −55.8201 −2.23639
\(624\) 0 0
\(625\) −23.3605 −0.934422
\(626\) 0 0
\(627\) −2.26582 + 2.26582i −0.0904881 + 0.0904881i
\(628\) 0 0
\(629\) −16.8252 16.8252i −0.670866 0.670866i
\(630\) 0 0
\(631\) 0.629888i 0.0250755i −0.999921 0.0125377i \(-0.996009\pi\)
0.999921 0.0125377i \(-0.00399099\pi\)
\(632\) 0 0
\(633\) 3.39104i 0.134782i
\(634\) 0 0
\(635\) 0.149746 + 0.149746i 0.00594248 + 0.00594248i
\(636\) 0 0
\(637\) 8.20701 8.20701i 0.325173 0.325173i
\(638\) 0 0
\(639\) −7.49207 −0.296382
\(640\) 0 0
\(641\) 3.52166 0.139097 0.0695486 0.997579i \(-0.477844\pi\)
0.0695486 + 0.997579i \(0.477844\pi\)
\(642\) 0 0
\(643\) −6.95627 + 6.95627i −0.274329 + 0.274329i −0.830840 0.556511i \(-0.812140\pi\)
0.556511 + 0.830840i \(0.312140\pi\)
\(644\) 0 0
\(645\) 0.921770 + 0.921770i 0.0362947 + 0.0362947i
\(646\) 0 0
\(647\) 30.7549i 1.20910i −0.796567 0.604550i \(-0.793353\pi\)
0.796567 0.604550i \(-0.206647\pi\)
\(648\) 0 0
\(649\) 24.3734i 0.956739i
\(650\) 0 0
\(651\) 13.3910 + 13.3910i 0.524836 + 0.524836i
\(652\) 0 0
\(653\) −6.52479 + 6.52479i −0.255335 + 0.255335i −0.823154 0.567819i \(-0.807787\pi\)
0.567819 + 0.823154i \(0.307787\pi\)
\(654\) 0 0
\(655\) −3.15694 −0.123352
\(656\) 0 0
\(657\) −5.62408 −0.219416
\(658\) 0 0
\(659\) 32.9242 32.9242i 1.28255 1.28255i 0.343330 0.939215i \(-0.388445\pi\)
0.939215 0.343330i \(-0.111555\pi\)
\(660\) 0 0
\(661\) −19.7506 19.7506i −0.768208 0.768208i 0.209583 0.977791i \(-0.432789\pi\)
−0.977791 + 0.209583i \(0.932789\pi\)
\(662\) 0 0
\(663\) 30.2741i 1.17575i
\(664\) 0 0
\(665\) 0.886864i 0.0343911i
\(666\) 0 0
\(667\) −13.8435 13.8435i −0.536024 0.536024i
\(668\) 0 0
\(669\) −7.44768 + 7.44768i −0.287944 + 0.287944i
\(670\) 0 0
\(671\) 54.7131 2.11217
\(672\) 0 0
\(673\) 6.34315 0.244510 0.122255 0.992499i \(-0.460987\pi\)
0.122255 + 0.992499i \(0.460987\pi\)
\(674\) 0 0
\(675\) −3.45768 + 3.45768i −0.133086 + 0.133086i
\(676\) 0 0
\(677\) 22.2680 + 22.2680i 0.855830 + 0.855830i 0.990844 0.135013i \(-0.0431077\pi\)
−0.135013 + 0.990844i \(0.543108\pi\)
\(678\) 0 0
\(679\) 52.5483i 2.01662i
\(680\) 0 0
\(681\) 23.4753i 0.899576i
\(682\) 0 0
\(683\) 19.8039 + 19.8039i 0.757775 + 0.757775i 0.975917 0.218142i \(-0.0699996\pi\)
−0.218142 + 0.975917i \(0.570000\pi\)
\(684\) 0 0
\(685\) −3.26492 + 3.26492i −0.124746 + 0.124746i
\(686\) 0 0
\(687\) −3.13932 −0.119773
\(688\) 0 0
\(689\) −2.62122 −0.0998606
\(690\) 0 0
\(691\) 27.0302 27.0302i 1.02828 1.02828i 0.0286870 0.999588i \(-0.490867\pi\)
0.999588 0.0286870i \(-0.00913260\pi\)
\(692\) 0 0
\(693\) 8.05468 + 8.05468i 0.305972 + 0.305972i
\(694\) 0 0
\(695\) 0.0256590i 0.000973301i
\(696\) 0 0
\(697\) 25.6297i 0.970794i
\(698\) 0 0
\(699\) 6.35275 + 6.35275i 0.240283 + 0.240283i
\(700\) 0 0
\(701\) 6.39035 6.39035i 0.241360 0.241360i −0.576053 0.817413i \(-0.695408\pi\)
0.817413 + 0.576053i \(0.195408\pi\)
\(702\) 0 0
\(703\) 3.16250 0.119276
\(704\) 0 0
\(705\) −0.549780 −0.0207059
\(706\) 0 0
\(707\) −26.4894 + 26.4894i −0.996238 + 0.996238i
\(708\) 0 0
\(709\) −28.2327 28.2327i −1.06030 1.06030i −0.998061 0.0622388i \(-0.980176\pi\)
−0.0622388 0.998061i \(-0.519824\pi\)
\(710\) 0 0
\(711\) 14.9040i 0.558945i
\(712\) 0 0
\(713\) 24.5754i 0.920357i
\(714\) 0 0
\(715\) 4.02371 + 4.02371i 0.150478 + 0.150478i
\(716\) 0 0
\(717\) −1.20116 + 1.20116i −0.0448583 + 0.0448583i
\(718\) 0 0
\(719\) −29.3036 −1.09284 −0.546420 0.837512i \(-0.684010\pi\)
−0.546420 + 0.837512i \(0.684010\pi\)
\(720\) 0 0
\(721\) −52.7221 −1.96348
\(722\) 0 0
\(723\) 10.1320 10.1320i 0.376813 0.376813i
\(724\) 0 0
\(725\) 16.9234 + 16.9234i 0.628518 + 0.628518i
\(726\) 0 0
\(727\) 12.6201i 0.468052i −0.972230 0.234026i \(-0.924810\pi\)
0.972230 0.234026i \(-0.0751902\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) −18.1229 18.1229i −0.670301 0.670301i
\(732\) 0 0
\(733\) −7.01549 + 7.01549i −0.259123 + 0.259123i −0.824697 0.565574i \(-0.808655\pi\)
0.565574 + 0.824697i \(0.308655\pi\)
\(734\) 0 0
\(735\) −0.829932 −0.0306125
\(736\) 0 0
\(737\) −51.6871 −1.90392
\(738\) 0 0
\(739\) 14.1840 14.1840i 0.521766 0.521766i −0.396338 0.918105i \(-0.629719\pi\)
0.918105 + 0.396338i \(0.129719\pi\)
\(740\) 0 0
\(741\) 2.84519 + 2.84519i 0.104521 + 0.104521i
\(742\) 0 0
\(743\) 11.0969i 0.407107i −0.979064 0.203554i \(-0.934751\pi\)
0.979064 0.203554i \(-0.0652492\pi\)
\(744\) 0 0
\(745\) 4.64174i 0.170060i
\(746\) 0 0
\(747\) 6.61313 + 6.61313i 0.241962 + 0.241962i
\(748\) 0 0
\(749\) −40.0502 + 40.0502i −1.46340 + 1.46340i
\(750\) 0 0
\(751\) −37.3294 −1.36217 −0.681084 0.732205i \(-0.738491\pi\)
−0.681084 + 0.732205i \(0.738491\pi\)
\(752\) 0 0
\(753\) −11.6955 −0.426208
\(754\) 0 0
\(755\) 4.36014 4.36014i 0.158682 0.158682i
\(756\) 0 0
\(757\) 18.9054 + 18.9054i 0.687128 + 0.687128i 0.961596 0.274468i \(-0.0885019\pi\)
−0.274468 + 0.961596i \(0.588502\pi\)
\(758\) 0 0
\(759\) 14.7821i 0.536555i
\(760\) 0 0
\(761\) 27.1767i 0.985155i −0.870269 0.492578i \(-0.836055\pi\)
0.870269 0.492578i \(-0.163945\pi\)
\(762\) 0 0
\(763\) −17.0984 17.0984i −0.619004 0.619004i
\(764\) 0 0
\(765\) −1.53073 + 1.53073i −0.0553438 + 0.0553438i
\(766\) 0 0
\(767\) −30.6057 −1.10511
\(768\) 0 0
\(769\) −8.34877 −0.301064 −0.150532 0.988605i \(-0.548099\pi\)
−0.150532 + 0.988605i \(0.548099\pi\)
\(770\) 0 0
\(771\) 2.81883 2.81883i 0.101518 0.101518i
\(772\) 0 0
\(773\) −14.6575 14.6575i −0.527195 0.527195i 0.392540 0.919735i \(-0.371597\pi\)
−0.919735 + 0.392540i \(0.871597\pi\)
\(774\) 0 0
\(775\) 30.0428i 1.07917i
\(776\) 0 0
\(777\) 11.2423i 0.403314i
\(778\) 0 0
\(779\) −2.40870 2.40870i −0.0863007 0.0863007i
\(780\) 0 0
\(781\) −19.5777 + 19.5777i −0.700546 + 0.700546i
\(782\) 0 0
\(783\) 4.89443 0.174913
\(784\) 0 0
\(785\) 1.76002 0.0628177
\(786\) 0 0
\(787\) −15.3533 + 15.3533i −0.547288 + 0.547288i −0.925655 0.378368i \(-0.876486\pi\)
0.378368 + 0.925655i \(0.376486\pi\)
\(788\) 0 0
\(789\) −8.38875 8.38875i −0.298648 0.298648i
\(790\) 0 0
\(791\) 11.2719i 0.400781i
\(792\) 0 0
\(793\) 68.7032i 2.43972i
\(794\) 0 0
\(795\) 0.132535 + 0.132535i 0.00470054 + 0.00470054i
\(796\) 0 0
\(797\) −19.4828 + 19.4828i −0.690116 + 0.690116i −0.962257 0.272142i \(-0.912268\pi\)
0.272142 + 0.962257i \(0.412268\pi\)
\(798\) 0 0
\(799\) 10.8092 0.382403
\(800\) 0 0
\(801\) −18.1094 −0.639863
\(802\) 0 0
\(803\) −14.6964 + 14.6964i −0.518625 + 0.518625i
\(804\) 0 0
\(805\) 2.89293 + 2.89293i 0.101962 + 0.101962i
\(806\) 0 0
\(807\) 21.3880i 0.752895i
\(808\) 0 0
\(809\) 18.8535i 0.662854i −0.943481 0.331427i \(-0.892470\pi\)
0.943481 0.331427i \(-0.107530\pi\)
\(810\) 0 0
\(811\) −4.79981 4.79981i −0.168544 0.168544i 0.617795 0.786339i \(-0.288026\pi\)
−0.786339 + 0.617795i \(0.788026\pi\)
\(812\) 0 0
\(813\) 8.52273 8.52273i 0.298905 0.298905i
\(814\) 0 0
\(815\) 4.41522 0.154658
\(816\) 0 0
\(817\) 3.40642 0.119175
\(818\) 0 0
\(819\) 10.1143 10.1143i 0.353421 0.353421i
\(820\) 0 0
\(821\) −11.3257 11.3257i −0.395269 0.395269i 0.481291 0.876561i \(-0.340168\pi\)
−0.876561 + 0.481291i \(0.840168\pi\)
\(822\) 0 0
\(823\) 28.5609i 0.995570i 0.867301 + 0.497785i \(0.165853\pi\)
−0.867301 + 0.497785i \(0.834147\pi\)
\(824\) 0 0
\(825\) 18.0707i 0.629141i
\(826\) 0 0
\(827\) 13.5332 + 13.5332i 0.470594 + 0.470594i 0.902107 0.431512i \(-0.142020\pi\)
−0.431512 + 0.902107i \(0.642020\pi\)
\(828\) 0 0
\(829\) −25.5200 + 25.5200i −0.886345 + 0.886345i −0.994170 0.107825i \(-0.965611\pi\)
0.107825 + 0.994170i \(0.465611\pi\)
\(830\) 0 0
\(831\) 4.81432 0.167007
\(832\) 0 0
\(833\) 16.3173 0.565361
\(834\) 0 0
\(835\) −3.73794 + 3.73794i −0.129357 + 0.129357i
\(836\) 0 0
\(837\) 4.34436 + 4.34436i 0.150163 + 0.150163i
\(838\) 0 0
\(839\) 18.8767i 0.651697i 0.945422 + 0.325849i \(0.105650\pi\)
−0.945422 + 0.325849i \(0.894350\pi\)
\(840\) 0 0
\(841\) 5.04455i 0.173950i
\(842\) 0 0
\(843\) 13.1348 + 13.1348i 0.452387 + 0.452387i
\(844\) 0 0
\(845\) 2.00234 2.00234i 0.0688826 0.0688826i
\(846\) 0 0
\(847\) 8.18947 0.281393
\(848\) 0 0
\(849\) 1.40461 0.0482062
\(850\) 0 0
\(851\) −10.3160 + 10.3160i −0.353628 + 0.353628i
\(852\) 0 0
\(853\) 18.5982 + 18.5982i 0.636790 + 0.636790i 0.949762 0.312972i \(-0.101325\pi\)
−0.312972 + 0.949762i \(0.601325\pi\)
\(854\) 0 0
\(855\) 0.287719i 0.00983979i
\(856\) 0 0
\(857\) 24.8671i 0.849444i −0.905324 0.424722i \(-0.860372\pi\)
0.905324 0.424722i \(-0.139628\pi\)
\(858\) 0 0
\(859\) −11.0302 11.0302i −0.376344 0.376344i 0.493437 0.869781i \(-0.335740\pi\)
−0.869781 + 0.493437i \(0.835740\pi\)
\(860\) 0 0
\(861\) −8.56261 + 8.56261i −0.291813 + 0.291813i
\(862\) 0 0
\(863\) −43.8654 −1.49320 −0.746598 0.665275i \(-0.768314\pi\)
−0.746598 + 0.665275i \(0.768314\pi\)
\(864\) 0 0
\(865\) −6.54447 −0.222519
\(866\) 0 0
\(867\) 18.0750 18.0750i 0.613858 0.613858i
\(868\) 0 0
\(869\) −38.9461 38.9461i −1.32116 1.32116i
\(870\) 0 0
\(871\) 64.9035i 2.19917i
\(872\) 0 0
\(873\) 17.0479i 0.576984i
\(874\) 0 0
\(875\) −7.15268 7.15268i −0.241805 0.241805i
\(876\) 0 0
\(877\) −32.2023 + 32.2023i −1.08740 + 1.08740i −0.0915994 + 0.995796i \(0.529198\pi\)
−0.995796 + 0.0915994i \(0.970802\pi\)
\(878\) 0 0
\(879\) −27.8786 −0.940321
\(880\) 0 0
\(881\) 19.8589 0.669064 0.334532 0.942384i \(-0.391422\pi\)
0.334532 + 0.942384i \(0.391422\pi\)
\(882\) 0 0
\(883\) −17.8714 + 17.8714i −0.601421 + 0.601421i −0.940689 0.339269i \(-0.889820\pi\)
0.339269 + 0.940689i \(0.389820\pi\)
\(884\) 0 0
\(885\) 1.54750 + 1.54750i 0.0520185 + 0.0520185i
\(886\) 0 0
\(887\) 2.07012i 0.0695079i 0.999396 + 0.0347539i \(0.0110648\pi\)
−0.999396 + 0.0347539i \(0.988935\pi\)
\(888\) 0 0
\(889\) 1.96722i 0.0659785i
\(890\) 0 0
\(891\) 2.61313 + 2.61313i 0.0875430 + 0.0875430i
\(892\) 0 0
\(893\) −1.01586 + 1.01586i −0.0339945 + 0.0339945i
\(894\) 0 0
\(895\) −1.98642 −0.0663988
\(896\) 0 0
\(897\) −18.5619 −0.619763
\(898\) 0 0
\(899\) 21.2632 21.2632i 0.709167 0.709167i
\(900\) 0 0
\(901\) −2.60578 2.60578i −0.0868111 0.0868111i
\(902\) 0 0
\(903\) 12.1094i 0.402974i
\(904\) 0 0
\(905\) 3.25584i 0.108228i
\(906\) 0 0
\(907\) 5.73002 + 5.73002i 0.190262 + 0.190262i 0.795809 0.605547i \(-0.207046\pi\)
−0.605547 + 0.795809i \(0.707046\pi\)
\(908\) 0 0
\(909\) −8.59379 + 8.59379i −0.285038 + 0.285038i
\(910\) 0 0
\(911\) 6.23034 0.206420 0.103210 0.994660i \(-0.467089\pi\)
0.103210 + 0.994660i \(0.467089\pi\)
\(912\) 0 0
\(913\) 34.5619 1.14383
\(914\) 0 0
\(915\) −3.47380 + 3.47380i −0.114840 + 0.114840i
\(916\) 0 0
\(917\) 20.7365 + 20.7365i 0.684778 + 0.684778i
\(918\) 0 0
\(919\) 15.1680i 0.500348i 0.968201 + 0.250174i \(0.0804878\pi\)
−0.968201 + 0.250174i \(0.919512\pi\)
\(920\) 0 0
\(921\) 17.4548i 0.575155i
\(922\) 0 0
\(923\) 24.5838 + 24.5838i 0.809184 + 0.809184i
\(924\) 0 0
\(925\) 12.6110 12.6110i 0.414648 0.414648i
\(926\) 0 0
\(927\) −17.1043 −0.561779
\(928\) 0 0
\(929\) −9.16951 −0.300842 −0.150421 0.988622i \(-0.548063\pi\)
−0.150421 + 0.988622i \(0.548063\pi\)
\(930\) 0 0
\(931\) −1.53351 + 1.53351i −0.0502589 + 0.0502589i
\(932\) 0 0
\(933\) −0.329569 0.329569i −0.0107896 0.0107896i
\(934\) 0 0
\(935\) 8.00000i 0.261628i
\(936\) 0 0
\(937\) 19.3183i 0.631101i 0.948909 + 0.315550i \(0.102189\pi\)
−0.948909 + 0.315550i \(0.897811\pi\)
\(938\) 0 0
\(939\) 1.76696 + 1.76696i 0.0576625 + 0.0576625i
\(940\) 0 0
\(941\) −7.38112 + 7.38112i −0.240618 + 0.240618i −0.817106 0.576488i \(-0.804423\pi\)
0.576488 + 0.817106i \(0.304423\pi\)
\(942\) 0 0
\(943\) 15.7142 0.511726
\(944\) 0 0
\(945\) −1.02280 −0.0332718
\(946\) 0 0
\(947\) 25.6425 25.6425i 0.833270 0.833270i −0.154692 0.987963i \(-0.549439\pi\)
0.987963 + 0.154692i \(0.0494387\pi\)
\(948\) 0 0
\(949\) 18.4543 + 18.4543i 0.599052 + 0.599052i
\(950\) 0 0
\(951\) 10.7425i 0.348349i
\(952\) 0 0
\(953\) 47.9271i 1.55251i 0.630419 + 0.776255i \(0.282883\pi\)
−0.630419 + 0.776255i \(0.717117\pi\)
\(954\) 0 0
\(955\) −4.52607 4.52607i −0.146460 0.146460i
\(956\) 0 0
\(957\) 12.7898 12.7898i 0.413434 0.413434i
\(958\) 0 0
\(959\) 42.8914 1.38504
\(960\) 0 0
\(961\) 6.74701 0.217646
\(962\) 0 0
\(963\) −12.9932 + 12.9932i −0.418700 + 0.418700i
\(964\) 0 0
\(965\) −0.0365353 0.0365353i −0.00117611 0.00117611i
\(966\) 0 0
\(967\) 20.7211i 0.666346i −0.942866 0.333173i \(-0.891881\pi\)
0.942866 0.333173i \(-0.108119\pi\)
\(968\) 0 0
\(969\) 5.65685i 0.181724i
\(970\) 0 0
\(971\) 26.9329 + 26.9329i 0.864317 + 0.864317i 0.991836 0.127519i \(-0.0407014\pi\)
−0.127519 + 0.991836i \(0.540701\pi\)
\(972\) 0 0
\(973\) 0.168542 0.168542i 0.00540321 0.00540321i
\(974\) 0 0
\(975\) 22.6914 0.726706
\(976\) 0 0
\(977\) −42.7363 −1.36726 −0.683628 0.729831i \(-0.739599\pi\)
−0.683628 + 0.729831i \(0.739599\pi\)
\(978\) 0 0
\(979\) −47.3220 + 47.3220i −1.51242 + 1.51242i
\(980\) 0 0
\(981\) −5.54712 5.54712i −0.177106 0.177106i
\(982\) 0 0
\(983\) 42.0031i 1.33969i −0.742501 0.669845i \(-0.766361\pi\)
0.742501 0.669845i \(-0.233639\pi\)
\(984\) 0 0
\(985\) 4.38049i 0.139574i
\(986\) 0 0
\(987\) 3.61125 + 3.61125i 0.114947 + 0.114947i
\(988\) 0 0
\(989\) −11.1116 + 11.1116i −0.353330 + 0.353330i
\(990\) 0 0
\(991\) −11.1918 −0.355518 −0.177759 0.984074i \(-0.556885\pi\)
−0.177759 + 0.984074i \(0.556885\pi\)
\(992\) 0 0
\(993\) −5.26810 −0.167178
\(994\) 0 0
\(995\) 5.42341 5.42341i 0.171934 0.171934i
\(996\) 0 0
\(997\) 36.9980 + 36.9980i 1.17174 + 1.17174i 0.981795 + 0.189942i \(0.0608301\pi\)
0.189942 + 0.981795i \(0.439170\pi\)
\(998\) 0 0
\(999\) 3.64725i 0.115394i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1536.2.j.i.385.3 yes 8
3.2 odd 2 4608.2.k.bc.3457.3 8
4.3 odd 2 1536.2.j.j.385.1 yes 8
8.3 odd 2 1536.2.j.e.385.4 8
8.5 even 2 1536.2.j.f.385.2 yes 8
12.11 even 2 4608.2.k.be.3457.3 8
16.3 odd 4 1536.2.j.j.1153.1 yes 8
16.5 even 4 1536.2.j.f.1153.2 yes 8
16.11 odd 4 1536.2.j.e.1153.4 yes 8
16.13 even 4 inner 1536.2.j.i.1153.3 yes 8
24.5 odd 2 4608.2.k.bj.3457.2 8
24.11 even 2 4608.2.k.bh.3457.2 8
32.3 odd 8 3072.2.a.m.1.3 4
32.5 even 8 3072.2.d.j.1537.6 8
32.11 odd 8 3072.2.d.e.1537.7 8
32.13 even 8 3072.2.a.j.1.2 4
32.19 odd 8 3072.2.a.s.1.2 4
32.21 even 8 3072.2.d.j.1537.3 8
32.27 odd 8 3072.2.d.e.1537.2 8
32.29 even 8 3072.2.a.p.1.3 4
48.5 odd 4 4608.2.k.bj.1153.2 8
48.11 even 4 4608.2.k.bh.1153.2 8
48.29 odd 4 4608.2.k.bc.1153.3 8
48.35 even 4 4608.2.k.be.1153.3 8
96.29 odd 8 9216.2.a.z.1.2 4
96.35 even 8 9216.2.a.bl.1.2 4
96.77 odd 8 9216.2.a.ba.1.3 4
96.83 even 8 9216.2.a.bm.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1536.2.j.e.385.4 8 8.3 odd 2
1536.2.j.e.1153.4 yes 8 16.11 odd 4
1536.2.j.f.385.2 yes 8 8.5 even 2
1536.2.j.f.1153.2 yes 8 16.5 even 4
1536.2.j.i.385.3 yes 8 1.1 even 1 trivial
1536.2.j.i.1153.3 yes 8 16.13 even 4 inner
1536.2.j.j.385.1 yes 8 4.3 odd 2
1536.2.j.j.1153.1 yes 8 16.3 odd 4
3072.2.a.j.1.2 4 32.13 even 8
3072.2.a.m.1.3 4 32.3 odd 8
3072.2.a.p.1.3 4 32.29 even 8
3072.2.a.s.1.2 4 32.19 odd 8
3072.2.d.e.1537.2 8 32.27 odd 8
3072.2.d.e.1537.7 8 32.11 odd 8
3072.2.d.j.1537.3 8 32.21 even 8
3072.2.d.j.1537.6 8 32.5 even 8
4608.2.k.bc.1153.3 8 48.29 odd 4
4608.2.k.bc.3457.3 8 3.2 odd 2
4608.2.k.be.1153.3 8 48.35 even 4
4608.2.k.be.3457.3 8 12.11 even 2
4608.2.k.bh.1153.2 8 48.11 even 4
4608.2.k.bh.3457.2 8 24.11 even 2
4608.2.k.bj.1153.2 8 48.5 odd 4
4608.2.k.bj.3457.2 8 24.5 odd 2
9216.2.a.z.1.2 4 96.29 odd 8
9216.2.a.ba.1.3 4 96.77 odd 8
9216.2.a.bl.1.2 4 96.35 even 8
9216.2.a.bm.1.3 4 96.83 even 8