L(s) = 1 | − 2·2-s + 3·4-s + 2·7-s − 4·8-s + 6·11-s − 4·14-s + 5·16-s − 12·22-s + 12·23-s − 10·25-s + 6·28-s − 12·29-s − 6·32-s − 8·37-s − 2·43-s + 18·44-s − 24·46-s − 3·49-s + 20·50-s − 24·53-s − 8·56-s + 24·58-s + 7·64-s + 10·67-s + 24·71-s + 16·74-s + 12·77-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s + 0.755·7-s − 1.41·8-s + 1.80·11-s − 1.06·14-s + 5/4·16-s − 2.55·22-s + 2.50·23-s − 2·25-s + 1.13·28-s − 2.22·29-s − 1.06·32-s − 1.31·37-s − 0.304·43-s + 2.71·44-s − 3.53·46-s − 3/7·49-s + 2.82·50-s − 3.29·53-s − 1.06·56-s + 3.15·58-s + 7/8·64-s + 1.22·67-s + 2.84·71-s + 1.85·74-s + 1.36·77-s + ⋯ |
Λ(s)=(=(1285956s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(1285956s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
1285956
= 22⋅38⋅72
|
Sign: |
−1
|
Analytic conductor: |
81.9936 |
Root analytic conductor: |
3.00915 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 1285956, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)2 |
| 3 | | 1 |
| 7 | C2 | 1−2T+pT2 |
good | 5 | C2 | (1+pT2)2 |
| 11 | C2 | (1−3T+pT2)2 |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 19 | C2 | (1−T+pT2)(1+T+pT2) |
| 23 | C2 | (1−6T+pT2)2 |
| 29 | C2 | (1+6T+pT2)2 |
| 31 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 37 | C2 | (1+4T+pT2)2 |
| 41 | C2 | (1−9T+pT2)(1+9T+pT2) |
| 43 | C2 | (1+T+pT2)2 |
| 47 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 53 | C2 | (1+12T+pT2)2 |
| 59 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 61 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 67 | C2 | (1−5T+pT2)2 |
| 71 | C2 | (1−12T+pT2)2 |
| 73 | C2 | (1−11T+pT2)(1+11T+pT2) |
| 79 | C2 | (1+4T+pT2)2 |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C2 | (1−5T+pT2)(1+5T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.80670854475898716623947697687, −7.57486075433264375877702850521, −6.83856700403258930718083224666, −6.68619713403218599725876916726, −6.35782135459828133998327355434, −5.48525873198846016080664036461, −5.34383976963704470462884839275, −4.67165130826644550690102729752, −3.84523654364808887700815920458, −3.65076060485342096132488694617, −2.98455636915823987690855594247, −2.07379971708251484770168742942, −1.60693251106342657124988453680, −1.22338111669750545882567189127, 0,
1.22338111669750545882567189127, 1.60693251106342657124988453680, 2.07379971708251484770168742942, 2.98455636915823987690855594247, 3.65076060485342096132488694617, 3.84523654364808887700815920458, 4.67165130826644550690102729752, 5.34383976963704470462884839275, 5.48525873198846016080664036461, 6.35782135459828133998327355434, 6.68619713403218599725876916726, 6.83856700403258930718083224666, 7.57486075433264375877702850521, 7.80670854475898716623947697687