L(s) = 1 | − 2·3-s − 2·5-s − 4·7-s + 6·11-s + 2·13-s + 4·15-s + 2·19-s + 8·21-s − 6·23-s + 3·25-s + 2·27-s − 12·29-s − 10·31-s − 12·33-s + 8·35-s − 8·37-s − 4·39-s − 10·43-s − 12·47-s − 2·49-s − 12·55-s − 4·57-s + 6·59-s + 4·61-s − 4·65-s + 8·67-s + 12·69-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 0.894·5-s − 1.51·7-s + 1.80·11-s + 0.554·13-s + 1.03·15-s + 0.458·19-s + 1.74·21-s − 1.25·23-s + 3/5·25-s + 0.384·27-s − 2.22·29-s − 1.79·31-s − 2.08·33-s + 1.35·35-s − 1.31·37-s − 0.640·39-s − 1.52·43-s − 1.75·47-s − 2/7·49-s − 1.61·55-s − 0.529·57-s + 0.781·59-s + 0.512·61-s − 0.496·65-s + 0.977·67-s + 1.44·69-s + ⋯ |
Λ(s)=(=(1081600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1081600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1081600
= 28⋅52⋅132
|
Sign: |
1
|
Analytic conductor: |
68.9637 |
Root analytic conductor: |
2.88174 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 1081600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | (1+T)2 |
| 13 | C1 | (1−T)2 |
good | 3 | D4 | 1+2T+4T2+2pT3+p2T4 |
| 7 | C2 | (1+2T+pT2)2 |
| 11 | D4 | 1−6T+28T2−6pT3+p2T4 |
| 17 | C22 | 1+22T2+p2T4 |
| 19 | D4 | 1−2T+12T2−2pT3+p2T4 |
| 23 | D4 | 1+6T+52T2+6pT3+p2T4 |
| 29 | D4 | 1+12T+82T2+12pT3+p2T4 |
| 31 | D4 | 1+10T+60T2+10pT3+p2T4 |
| 37 | C2 | (1+4T+pT2)2 |
| 41 | C22 | 1+70T2+p2T4 |
| 43 | D4 | 1+10T+84T2+10pT3+p2T4 |
| 47 | C2 | (1+6T+pT2)2 |
| 53 | C22 | 1−2T2+p2T4 |
| 59 | D4 | 1−6T−20T2−6pT3+p2T4 |
| 61 | D4 | 1−4T+18T2−4pT3+p2T4 |
| 67 | D4 | 1−8T+42T2−8pT3+p2T4 |
| 71 | D4 | 1+6T+148T2+6pT3+p2T4 |
| 73 | C2 | (1+4T+pT2)2 |
| 79 | D4 | 1+4T+54T2+4pT3+p2T4 |
| 83 | C2 | (1−6T+pT2)2 |
| 89 | D4 | 1+12T+166T2+12pT3+p2T4 |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.532663191880723444619536247441, −9.520396530595932899143950961913, −8.967206648728870014215894131024, −8.540717878316464630724059987299, −8.085339355611054246272212776661, −7.49276571100856719837184004871, −6.96712216720779269762232073081, −6.79838215939637904678030754983, −6.15940545510306890101837070572, −6.12996587625445438988118560282, −5.32936653089787902577483318484, −5.24556846747375416793353123411, −4.25980771066364625189641702523, −3.81607625168915196341785738898, −3.41420358823914627451734117820, −3.33321581223917908753820993425, −1.98037084213370900213557926370, −1.41141287518027260408649480549, 0, 0,
1.41141287518027260408649480549, 1.98037084213370900213557926370, 3.33321581223917908753820993425, 3.41420358823914627451734117820, 3.81607625168915196341785738898, 4.25980771066364625189641702523, 5.24556846747375416793353123411, 5.32936653089787902577483318484, 6.12996587625445438988118560282, 6.15940545510306890101837070572, 6.79838215939637904678030754983, 6.96712216720779269762232073081, 7.49276571100856719837184004871, 8.085339355611054246272212776661, 8.540717878316464630724059987299, 8.967206648728870014215894131024, 9.520396530595932899143950961913, 9.532663191880723444619536247441