Properties

Label 4-1040e2-1.1-c1e2-0-77
Degree $4$
Conductor $1081600$
Sign $1$
Analytic cond. $68.9637$
Root an. cond. $2.88174$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·5-s − 4·7-s + 6·11-s + 2·13-s + 4·15-s + 2·19-s + 8·21-s − 6·23-s + 3·25-s + 2·27-s − 12·29-s − 10·31-s − 12·33-s + 8·35-s − 8·37-s − 4·39-s − 10·43-s − 12·47-s − 2·49-s − 12·55-s − 4·57-s + 6·59-s + 4·61-s − 4·65-s + 8·67-s + 12·69-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.894·5-s − 1.51·7-s + 1.80·11-s + 0.554·13-s + 1.03·15-s + 0.458·19-s + 1.74·21-s − 1.25·23-s + 3/5·25-s + 0.384·27-s − 2.22·29-s − 1.79·31-s − 2.08·33-s + 1.35·35-s − 1.31·37-s − 0.640·39-s − 1.52·43-s − 1.75·47-s − 2/7·49-s − 1.61·55-s − 0.529·57-s + 0.781·59-s + 0.512·61-s − 0.496·65-s + 0.977·67-s + 1.44·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1081600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1081600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1081600\)    =    \(2^{8} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(68.9637\)
Root analytic conductor: \(2.88174\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 1081600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 + T )^{2} \)
13$C_1$ \( ( 1 - T )^{2} \)
good3$D_{4}$ \( 1 + 2 T + 4 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$D_{4}$ \( 1 - 6 T + 28 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 2 T + 12 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 6 T + 52 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 12 T + 82 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 10 T + 60 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 10 T + 84 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 6 T - 20 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 4 T + 18 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 8 T + 42 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 6 T + 148 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
73$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
79$D_{4}$ \( 1 + 4 T + 54 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$D_{4}$ \( 1 + 12 T + 166 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.532663191880723444619536247441, −9.520396530595932899143950961913, −8.967206648728870014215894131024, −8.540717878316464630724059987299, −8.085339355611054246272212776661, −7.49276571100856719837184004871, −6.96712216720779269762232073081, −6.79838215939637904678030754983, −6.15940545510306890101837070572, −6.12996587625445438988118560282, −5.32936653089787902577483318484, −5.24556846747375416793353123411, −4.25980771066364625189641702523, −3.81607625168915196341785738898, −3.41420358823914627451734117820, −3.33321581223917908753820993425, −1.98037084213370900213557926370, −1.41141287518027260408649480549, 0, 0, 1.41141287518027260408649480549, 1.98037084213370900213557926370, 3.33321581223917908753820993425, 3.41420358823914627451734117820, 3.81607625168915196341785738898, 4.25980771066364625189641702523, 5.24556846747375416793353123411, 5.32936653089787902577483318484, 6.12996587625445438988118560282, 6.15940545510306890101837070572, 6.79838215939637904678030754983, 6.96712216720779269762232073081, 7.49276571100856719837184004871, 8.085339355611054246272212776661, 8.540717878316464630724059987299, 8.967206648728870014215894131024, 9.520396530595932899143950961913, 9.532663191880723444619536247441

Graph of the $Z$-function along the critical line