Properties

Label 1040.2.a.h.1.1
Level $1040$
Weight $2$
Character 1040.1
Self dual yes
Analytic conductor $8.304$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,2,Mod(1,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.30444181021\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 1040.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.73205 q^{3} -1.00000 q^{5} -2.00000 q^{7} +4.46410 q^{9} +4.73205 q^{11} +1.00000 q^{13} +2.73205 q^{15} -3.46410 q^{17} +6.19615 q^{19} +5.46410 q^{21} -1.26795 q^{23} +1.00000 q^{25} -4.00000 q^{27} -2.53590 q^{29} -10.1962 q^{31} -12.9282 q^{33} +2.00000 q^{35} -4.00000 q^{37} -2.73205 q^{39} +3.46410 q^{41} +0.196152 q^{43} -4.46410 q^{45} -6.00000 q^{47} -3.00000 q^{49} +9.46410 q^{51} +10.3923 q^{53} -4.73205 q^{55} -16.9282 q^{57} -9.12436 q^{59} -8.39230 q^{61} -8.92820 q^{63} -1.00000 q^{65} -6.39230 q^{67} +3.46410 q^{69} -4.73205 q^{71} -4.00000 q^{73} -2.73205 q^{75} -9.46410 q^{77} +8.39230 q^{79} -2.46410 q^{81} +6.00000 q^{83} +3.46410 q^{85} +6.92820 q^{87} -12.9282 q^{89} -2.00000 q^{91} +27.8564 q^{93} -6.19615 q^{95} +2.00000 q^{97} +21.1244 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{5} - 4 q^{7} + 2 q^{9} + 6 q^{11} + 2 q^{13} + 2 q^{15} + 2 q^{19} + 4 q^{21} - 6 q^{23} + 2 q^{25} - 8 q^{27} - 12 q^{29} - 10 q^{31} - 12 q^{33} + 4 q^{35} - 8 q^{37} - 2 q^{39} - 10 q^{43}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.73205 −1.57735 −0.788675 0.614810i \(-0.789233\pi\)
−0.788675 + 0.614810i \(0.789233\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 0 0
\(9\) 4.46410 1.48803
\(10\) 0 0
\(11\) 4.73205 1.42677 0.713384 0.700774i \(-0.247162\pi\)
0.713384 + 0.700774i \(0.247162\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 2.73205 0.705412
\(16\) 0 0
\(17\) −3.46410 −0.840168 −0.420084 0.907485i \(-0.637999\pi\)
−0.420084 + 0.907485i \(0.637999\pi\)
\(18\) 0 0
\(19\) 6.19615 1.42149 0.710747 0.703447i \(-0.248357\pi\)
0.710747 + 0.703447i \(0.248357\pi\)
\(20\) 0 0
\(21\) 5.46410 1.19236
\(22\) 0 0
\(23\) −1.26795 −0.264386 −0.132193 0.991224i \(-0.542202\pi\)
−0.132193 + 0.991224i \(0.542202\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) −2.53590 −0.470905 −0.235452 0.971886i \(-0.575657\pi\)
−0.235452 + 0.971886i \(0.575657\pi\)
\(30\) 0 0
\(31\) −10.1962 −1.83128 −0.915642 0.401996i \(-0.868317\pi\)
−0.915642 + 0.401996i \(0.868317\pi\)
\(32\) 0 0
\(33\) −12.9282 −2.25051
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 0 0
\(39\) −2.73205 −0.437478
\(40\) 0 0
\(41\) 3.46410 0.541002 0.270501 0.962720i \(-0.412811\pi\)
0.270501 + 0.962720i \(0.412811\pi\)
\(42\) 0 0
\(43\) 0.196152 0.0299130 0.0149565 0.999888i \(-0.495239\pi\)
0.0149565 + 0.999888i \(0.495239\pi\)
\(44\) 0 0
\(45\) −4.46410 −0.665469
\(46\) 0 0
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 9.46410 1.32524
\(52\) 0 0
\(53\) 10.3923 1.42749 0.713746 0.700404i \(-0.246997\pi\)
0.713746 + 0.700404i \(0.246997\pi\)
\(54\) 0 0
\(55\) −4.73205 −0.638070
\(56\) 0 0
\(57\) −16.9282 −2.24220
\(58\) 0 0
\(59\) −9.12436 −1.18789 −0.593945 0.804506i \(-0.702430\pi\)
−0.593945 + 0.804506i \(0.702430\pi\)
\(60\) 0 0
\(61\) −8.39230 −1.07452 −0.537262 0.843415i \(-0.680541\pi\)
−0.537262 + 0.843415i \(0.680541\pi\)
\(62\) 0 0
\(63\) −8.92820 −1.12485
\(64\) 0 0
\(65\) −1.00000 −0.124035
\(66\) 0 0
\(67\) −6.39230 −0.780944 −0.390472 0.920615i \(-0.627688\pi\)
−0.390472 + 0.920615i \(0.627688\pi\)
\(68\) 0 0
\(69\) 3.46410 0.417029
\(70\) 0 0
\(71\) −4.73205 −0.561591 −0.280796 0.959768i \(-0.590598\pi\)
−0.280796 + 0.959768i \(0.590598\pi\)
\(72\) 0 0
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 0 0
\(75\) −2.73205 −0.315470
\(76\) 0 0
\(77\) −9.46410 −1.07853
\(78\) 0 0
\(79\) 8.39230 0.944208 0.472104 0.881543i \(-0.343495\pi\)
0.472104 + 0.881543i \(0.343495\pi\)
\(80\) 0 0
\(81\) −2.46410 −0.273789
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) 3.46410 0.375735
\(86\) 0 0
\(87\) 6.92820 0.742781
\(88\) 0 0
\(89\) −12.9282 −1.37039 −0.685193 0.728361i \(-0.740282\pi\)
−0.685193 + 0.728361i \(0.740282\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 0 0
\(93\) 27.8564 2.88857
\(94\) 0 0
\(95\) −6.19615 −0.635712
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 21.1244 2.12308
\(100\) 0 0
\(101\) −0.928203 −0.0923597 −0.0461798 0.998933i \(-0.514705\pi\)
−0.0461798 + 0.998933i \(0.514705\pi\)
\(102\) 0 0
\(103\) 0.196152 0.0193275 0.00966374 0.999953i \(-0.496924\pi\)
0.00966374 + 0.999953i \(0.496924\pi\)
\(104\) 0 0
\(105\) −5.46410 −0.533242
\(106\) 0 0
\(107\) −17.6603 −1.70728 −0.853641 0.520862i \(-0.825610\pi\)
−0.853641 + 0.520862i \(0.825610\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 10.9282 1.03726
\(112\) 0 0
\(113\) 8.53590 0.802990 0.401495 0.915861i \(-0.368491\pi\)
0.401495 + 0.915861i \(0.368491\pi\)
\(114\) 0 0
\(115\) 1.26795 0.118237
\(116\) 0 0
\(117\) 4.46410 0.412706
\(118\) 0 0
\(119\) 6.92820 0.635107
\(120\) 0 0
\(121\) 11.3923 1.03566
\(122\) 0 0
\(123\) −9.46410 −0.853349
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −16.1962 −1.43718 −0.718588 0.695436i \(-0.755211\pi\)
−0.718588 + 0.695436i \(0.755211\pi\)
\(128\) 0 0
\(129\) −0.535898 −0.0471832
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −12.3923 −1.07455
\(134\) 0 0
\(135\) 4.00000 0.344265
\(136\) 0 0
\(137\) 0.928203 0.0793018 0.0396509 0.999214i \(-0.487375\pi\)
0.0396509 + 0.999214i \(0.487375\pi\)
\(138\) 0 0
\(139\) −12.3923 −1.05110 −0.525551 0.850762i \(-0.676141\pi\)
−0.525551 + 0.850762i \(0.676141\pi\)
\(140\) 0 0
\(141\) 16.3923 1.38048
\(142\) 0 0
\(143\) 4.73205 0.395714
\(144\) 0 0
\(145\) 2.53590 0.210595
\(146\) 0 0
\(147\) 8.19615 0.676007
\(148\) 0 0
\(149\) −7.85641 −0.643622 −0.321811 0.946804i \(-0.604292\pi\)
−0.321811 + 0.946804i \(0.604292\pi\)
\(150\) 0 0
\(151\) 1.80385 0.146795 0.0733975 0.997303i \(-0.476616\pi\)
0.0733975 + 0.997303i \(0.476616\pi\)
\(152\) 0 0
\(153\) −15.4641 −1.25020
\(154\) 0 0
\(155\) 10.1962 0.818975
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) 0 0
\(159\) −28.3923 −2.25166
\(160\) 0 0
\(161\) 2.53590 0.199857
\(162\) 0 0
\(163\) 14.3923 1.12729 0.563646 0.826016i \(-0.309398\pi\)
0.563646 + 0.826016i \(0.309398\pi\)
\(164\) 0 0
\(165\) 12.9282 1.00646
\(166\) 0 0
\(167\) 0.928203 0.0718265 0.0359133 0.999355i \(-0.488566\pi\)
0.0359133 + 0.999355i \(0.488566\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 27.6603 2.11523
\(172\) 0 0
\(173\) 8.53590 0.648972 0.324486 0.945890i \(-0.394809\pi\)
0.324486 + 0.945890i \(0.394809\pi\)
\(174\) 0 0
\(175\) −2.00000 −0.151186
\(176\) 0 0
\(177\) 24.9282 1.87372
\(178\) 0 0
\(179\) 18.9282 1.41476 0.707380 0.706833i \(-0.249877\pi\)
0.707380 + 0.706833i \(0.249877\pi\)
\(180\) 0 0
\(181\) 0.392305 0.0291598 0.0145799 0.999894i \(-0.495359\pi\)
0.0145799 + 0.999894i \(0.495359\pi\)
\(182\) 0 0
\(183\) 22.9282 1.69490
\(184\) 0 0
\(185\) 4.00000 0.294086
\(186\) 0 0
\(187\) −16.3923 −1.19872
\(188\) 0 0
\(189\) 8.00000 0.581914
\(190\) 0 0
\(191\) 5.07180 0.366982 0.183491 0.983021i \(-0.441260\pi\)
0.183491 + 0.983021i \(0.441260\pi\)
\(192\) 0 0
\(193\) −10.0000 −0.719816 −0.359908 0.932988i \(-0.617192\pi\)
−0.359908 + 0.932988i \(0.617192\pi\)
\(194\) 0 0
\(195\) 2.73205 0.195646
\(196\) 0 0
\(197\) −12.9282 −0.921096 −0.460548 0.887635i \(-0.652347\pi\)
−0.460548 + 0.887635i \(0.652347\pi\)
\(198\) 0 0
\(199\) −20.0000 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 0 0
\(201\) 17.4641 1.23182
\(202\) 0 0
\(203\) 5.07180 0.355970
\(204\) 0 0
\(205\) −3.46410 −0.241943
\(206\) 0 0
\(207\) −5.66025 −0.393415
\(208\) 0 0
\(209\) 29.3205 2.02814
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 0 0
\(213\) 12.9282 0.885826
\(214\) 0 0
\(215\) −0.196152 −0.0133775
\(216\) 0 0
\(217\) 20.3923 1.38432
\(218\) 0 0
\(219\) 10.9282 0.738460
\(220\) 0 0
\(221\) −3.46410 −0.233021
\(222\) 0 0
\(223\) −2.00000 −0.133930 −0.0669650 0.997755i \(-0.521332\pi\)
−0.0669650 + 0.997755i \(0.521332\pi\)
\(224\) 0 0
\(225\) 4.46410 0.297607
\(226\) 0 0
\(227\) 3.46410 0.229920 0.114960 0.993370i \(-0.463326\pi\)
0.114960 + 0.993370i \(0.463326\pi\)
\(228\) 0 0
\(229\) 6.39230 0.422415 0.211208 0.977441i \(-0.432260\pi\)
0.211208 + 0.977441i \(0.432260\pi\)
\(230\) 0 0
\(231\) 25.8564 1.70123
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 6.00000 0.391397
\(236\) 0 0
\(237\) −22.9282 −1.48935
\(238\) 0 0
\(239\) 14.1962 0.918273 0.459136 0.888366i \(-0.348159\pi\)
0.459136 + 0.888366i \(0.348159\pi\)
\(240\) 0 0
\(241\) −2.39230 −0.154102 −0.0770510 0.997027i \(-0.524550\pi\)
−0.0770510 + 0.997027i \(0.524550\pi\)
\(242\) 0 0
\(243\) 18.7321 1.20166
\(244\) 0 0
\(245\) 3.00000 0.191663
\(246\) 0 0
\(247\) 6.19615 0.394252
\(248\) 0 0
\(249\) −16.3923 −1.03882
\(250\) 0 0
\(251\) 21.4641 1.35480 0.677401 0.735614i \(-0.263106\pi\)
0.677401 + 0.735614i \(0.263106\pi\)
\(252\) 0 0
\(253\) −6.00000 −0.377217
\(254\) 0 0
\(255\) −9.46410 −0.592665
\(256\) 0 0
\(257\) 19.8564 1.23861 0.619304 0.785151i \(-0.287415\pi\)
0.619304 + 0.785151i \(0.287415\pi\)
\(258\) 0 0
\(259\) 8.00000 0.497096
\(260\) 0 0
\(261\) −11.3205 −0.700722
\(262\) 0 0
\(263\) −1.26795 −0.0781851 −0.0390925 0.999236i \(-0.512447\pi\)
−0.0390925 + 0.999236i \(0.512447\pi\)
\(264\) 0 0
\(265\) −10.3923 −0.638394
\(266\) 0 0
\(267\) 35.3205 2.16158
\(268\) 0 0
\(269\) −19.8564 −1.21067 −0.605333 0.795972i \(-0.706960\pi\)
−0.605333 + 0.795972i \(0.706960\pi\)
\(270\) 0 0
\(271\) −30.9808 −1.88195 −0.940974 0.338480i \(-0.890087\pi\)
−0.940974 + 0.338480i \(0.890087\pi\)
\(272\) 0 0
\(273\) 5.46410 0.330702
\(274\) 0 0
\(275\) 4.73205 0.285353
\(276\) 0 0
\(277\) −26.3923 −1.58576 −0.792880 0.609378i \(-0.791419\pi\)
−0.792880 + 0.609378i \(0.791419\pi\)
\(278\) 0 0
\(279\) −45.5167 −2.72501
\(280\) 0 0
\(281\) 22.3923 1.33581 0.667906 0.744245i \(-0.267191\pi\)
0.667906 + 0.744245i \(0.267191\pi\)
\(282\) 0 0
\(283\) −32.5885 −1.93718 −0.968591 0.248658i \(-0.920010\pi\)
−0.968591 + 0.248658i \(0.920010\pi\)
\(284\) 0 0
\(285\) 16.9282 1.00274
\(286\) 0 0
\(287\) −6.92820 −0.408959
\(288\) 0 0
\(289\) −5.00000 −0.294118
\(290\) 0 0
\(291\) −5.46410 −0.320311
\(292\) 0 0
\(293\) −5.07180 −0.296298 −0.148149 0.988965i \(-0.547331\pi\)
−0.148149 + 0.988965i \(0.547331\pi\)
\(294\) 0 0
\(295\) 9.12436 0.531241
\(296\) 0 0
\(297\) −18.9282 −1.09833
\(298\) 0 0
\(299\) −1.26795 −0.0733274
\(300\) 0 0
\(301\) −0.392305 −0.0226121
\(302\) 0 0
\(303\) 2.53590 0.145684
\(304\) 0 0
\(305\) 8.39230 0.480542
\(306\) 0 0
\(307\) 18.7846 1.07209 0.536047 0.844188i \(-0.319917\pi\)
0.536047 + 0.844188i \(0.319917\pi\)
\(308\) 0 0
\(309\) −0.535898 −0.0304862
\(310\) 0 0
\(311\) 16.3923 0.929522 0.464761 0.885436i \(-0.346140\pi\)
0.464761 + 0.885436i \(0.346140\pi\)
\(312\) 0 0
\(313\) −14.3923 −0.813501 −0.406751 0.913539i \(-0.633338\pi\)
−0.406751 + 0.913539i \(0.633338\pi\)
\(314\) 0 0
\(315\) 8.92820 0.503047
\(316\) 0 0
\(317\) 24.0000 1.34797 0.673987 0.738743i \(-0.264580\pi\)
0.673987 + 0.738743i \(0.264580\pi\)
\(318\) 0 0
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) 48.2487 2.69298
\(322\) 0 0
\(323\) −21.4641 −1.19429
\(324\) 0 0
\(325\) 1.00000 0.0554700
\(326\) 0 0
\(327\) −5.46410 −0.302166
\(328\) 0 0
\(329\) 12.0000 0.661581
\(330\) 0 0
\(331\) −2.58846 −0.142274 −0.0711372 0.997467i \(-0.522663\pi\)
−0.0711372 + 0.997467i \(0.522663\pi\)
\(332\) 0 0
\(333\) −17.8564 −0.978525
\(334\) 0 0
\(335\) 6.39230 0.349249
\(336\) 0 0
\(337\) −26.3923 −1.43768 −0.718840 0.695175i \(-0.755327\pi\)
−0.718840 + 0.695175i \(0.755327\pi\)
\(338\) 0 0
\(339\) −23.3205 −1.26660
\(340\) 0 0
\(341\) −48.2487 −2.61281
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) −3.46410 −0.186501
\(346\) 0 0
\(347\) 5.66025 0.303858 0.151929 0.988391i \(-0.451451\pi\)
0.151929 + 0.988391i \(0.451451\pi\)
\(348\) 0 0
\(349\) −14.3923 −0.770402 −0.385201 0.922833i \(-0.625868\pi\)
−0.385201 + 0.922833i \(0.625868\pi\)
\(350\) 0 0
\(351\) −4.00000 −0.213504
\(352\) 0 0
\(353\) −27.7128 −1.47500 −0.737502 0.675345i \(-0.763995\pi\)
−0.737502 + 0.675345i \(0.763995\pi\)
\(354\) 0 0
\(355\) 4.73205 0.251151
\(356\) 0 0
\(357\) −18.9282 −1.00179
\(358\) 0 0
\(359\) 2.19615 0.115908 0.0579542 0.998319i \(-0.481542\pi\)
0.0579542 + 0.998319i \(0.481542\pi\)
\(360\) 0 0
\(361\) 19.3923 1.02065
\(362\) 0 0
\(363\) −31.1244 −1.63361
\(364\) 0 0
\(365\) 4.00000 0.209370
\(366\) 0 0
\(367\) −11.8038 −0.616156 −0.308078 0.951361i \(-0.599686\pi\)
−0.308078 + 0.951361i \(0.599686\pi\)
\(368\) 0 0
\(369\) 15.4641 0.805029
\(370\) 0 0
\(371\) −20.7846 −1.07908
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) 2.73205 0.141082
\(376\) 0 0
\(377\) −2.53590 −0.130605
\(378\) 0 0
\(379\) −18.9808 −0.974976 −0.487488 0.873130i \(-0.662087\pi\)
−0.487488 + 0.873130i \(0.662087\pi\)
\(380\) 0 0
\(381\) 44.2487 2.26693
\(382\) 0 0
\(383\) −12.9282 −0.660600 −0.330300 0.943876i \(-0.607150\pi\)
−0.330300 + 0.943876i \(0.607150\pi\)
\(384\) 0 0
\(385\) 9.46410 0.482335
\(386\) 0 0
\(387\) 0.875644 0.0445115
\(388\) 0 0
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 4.39230 0.222128
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −8.39230 −0.422263
\(396\) 0 0
\(397\) 28.7846 1.44466 0.722329 0.691549i \(-0.243072\pi\)
0.722329 + 0.691549i \(0.243072\pi\)
\(398\) 0 0
\(399\) 33.8564 1.69494
\(400\) 0 0
\(401\) −36.9282 −1.84411 −0.922053 0.387063i \(-0.873490\pi\)
−0.922053 + 0.387063i \(0.873490\pi\)
\(402\) 0 0
\(403\) −10.1962 −0.507907
\(404\) 0 0
\(405\) 2.46410 0.122442
\(406\) 0 0
\(407\) −18.9282 −0.938236
\(408\) 0 0
\(409\) −17.6077 −0.870644 −0.435322 0.900275i \(-0.643366\pi\)
−0.435322 + 0.900275i \(0.643366\pi\)
\(410\) 0 0
\(411\) −2.53590 −0.125087
\(412\) 0 0
\(413\) 18.2487 0.897960
\(414\) 0 0
\(415\) −6.00000 −0.294528
\(416\) 0 0
\(417\) 33.8564 1.65796
\(418\) 0 0
\(419\) 2.53590 0.123887 0.0619434 0.998080i \(-0.480270\pi\)
0.0619434 + 0.998080i \(0.480270\pi\)
\(420\) 0 0
\(421\) −30.7846 −1.50035 −0.750175 0.661239i \(-0.770031\pi\)
−0.750175 + 0.661239i \(0.770031\pi\)
\(422\) 0 0
\(423\) −26.7846 −1.30231
\(424\) 0 0
\(425\) −3.46410 −0.168034
\(426\) 0 0
\(427\) 16.7846 0.812264
\(428\) 0 0
\(429\) −12.9282 −0.624180
\(430\) 0 0
\(431\) 25.5167 1.22909 0.614547 0.788880i \(-0.289339\pi\)
0.614547 + 0.788880i \(0.289339\pi\)
\(432\) 0 0
\(433\) 34.7846 1.67164 0.835821 0.549002i \(-0.184992\pi\)
0.835821 + 0.549002i \(0.184992\pi\)
\(434\) 0 0
\(435\) −6.92820 −0.332182
\(436\) 0 0
\(437\) −7.85641 −0.375823
\(438\) 0 0
\(439\) −32.0000 −1.52728 −0.763638 0.645644i \(-0.776589\pi\)
−0.763638 + 0.645644i \(0.776589\pi\)
\(440\) 0 0
\(441\) −13.3923 −0.637729
\(442\) 0 0
\(443\) 16.9808 0.806780 0.403390 0.915028i \(-0.367832\pi\)
0.403390 + 0.915028i \(0.367832\pi\)
\(444\) 0 0
\(445\) 12.9282 0.612856
\(446\) 0 0
\(447\) 21.4641 1.01522
\(448\) 0 0
\(449\) 20.5359 0.969149 0.484574 0.874750i \(-0.338974\pi\)
0.484574 + 0.874750i \(0.338974\pi\)
\(450\) 0 0
\(451\) 16.3923 0.771883
\(452\) 0 0
\(453\) −4.92820 −0.231547
\(454\) 0 0
\(455\) 2.00000 0.0937614
\(456\) 0 0
\(457\) 10.7846 0.504483 0.252241 0.967664i \(-0.418832\pi\)
0.252241 + 0.967664i \(0.418832\pi\)
\(458\) 0 0
\(459\) 13.8564 0.646762
\(460\) 0 0
\(461\) −3.46410 −0.161339 −0.0806696 0.996741i \(-0.525706\pi\)
−0.0806696 + 0.996741i \(0.525706\pi\)
\(462\) 0 0
\(463\) 2.39230 0.111180 0.0555899 0.998454i \(-0.482296\pi\)
0.0555899 + 0.998454i \(0.482296\pi\)
\(464\) 0 0
\(465\) −27.8564 −1.29181
\(466\) 0 0
\(467\) −27.8038 −1.28661 −0.643304 0.765611i \(-0.722437\pi\)
−0.643304 + 0.765611i \(0.722437\pi\)
\(468\) 0 0
\(469\) 12.7846 0.590338
\(470\) 0 0
\(471\) 27.3205 1.25886
\(472\) 0 0
\(473\) 0.928203 0.0426788
\(474\) 0 0
\(475\) 6.19615 0.284299
\(476\) 0 0
\(477\) 46.3923 2.12416
\(478\) 0 0
\(479\) −35.6603 −1.62936 −0.814679 0.579912i \(-0.803087\pi\)
−0.814679 + 0.579912i \(0.803087\pi\)
\(480\) 0 0
\(481\) −4.00000 −0.182384
\(482\) 0 0
\(483\) −6.92820 −0.315244
\(484\) 0 0
\(485\) −2.00000 −0.0908153
\(486\) 0 0
\(487\) 26.3923 1.19595 0.597975 0.801515i \(-0.295972\pi\)
0.597975 + 0.801515i \(0.295972\pi\)
\(488\) 0 0
\(489\) −39.3205 −1.77813
\(490\) 0 0
\(491\) 2.53590 0.114443 0.0572217 0.998361i \(-0.481776\pi\)
0.0572217 + 0.998361i \(0.481776\pi\)
\(492\) 0 0
\(493\) 8.78461 0.395639
\(494\) 0 0
\(495\) −21.1244 −0.949469
\(496\) 0 0
\(497\) 9.46410 0.424523
\(498\) 0 0
\(499\) 38.9808 1.74502 0.872509 0.488598i \(-0.162491\pi\)
0.872509 + 0.488598i \(0.162491\pi\)
\(500\) 0 0
\(501\) −2.53590 −0.113296
\(502\) 0 0
\(503\) −19.5167 −0.870205 −0.435102 0.900381i \(-0.643288\pi\)
−0.435102 + 0.900381i \(0.643288\pi\)
\(504\) 0 0
\(505\) 0.928203 0.0413045
\(506\) 0 0
\(507\) −2.73205 −0.121335
\(508\) 0 0
\(509\) 39.4641 1.74922 0.874608 0.484831i \(-0.161119\pi\)
0.874608 + 0.484831i \(0.161119\pi\)
\(510\) 0 0
\(511\) 8.00000 0.353899
\(512\) 0 0
\(513\) −24.7846 −1.09427
\(514\) 0 0
\(515\) −0.196152 −0.00864351
\(516\) 0 0
\(517\) −28.3923 −1.24869
\(518\) 0 0
\(519\) −23.3205 −1.02366
\(520\) 0 0
\(521\) −28.3923 −1.24389 −0.621945 0.783061i \(-0.713657\pi\)
−0.621945 + 0.783061i \(0.713657\pi\)
\(522\) 0 0
\(523\) 24.1962 1.05802 0.529012 0.848614i \(-0.322563\pi\)
0.529012 + 0.848614i \(0.322563\pi\)
\(524\) 0 0
\(525\) 5.46410 0.238473
\(526\) 0 0
\(527\) 35.3205 1.53859
\(528\) 0 0
\(529\) −21.3923 −0.930100
\(530\) 0 0
\(531\) −40.7321 −1.76762
\(532\) 0 0
\(533\) 3.46410 0.150047
\(534\) 0 0
\(535\) 17.6603 0.763519
\(536\) 0 0
\(537\) −51.7128 −2.23157
\(538\) 0 0
\(539\) −14.1962 −0.611472
\(540\) 0 0
\(541\) −26.3923 −1.13469 −0.567347 0.823479i \(-0.692030\pi\)
−0.567347 + 0.823479i \(0.692030\pi\)
\(542\) 0 0
\(543\) −1.07180 −0.0459952
\(544\) 0 0
\(545\) −2.00000 −0.0856706
\(546\) 0 0
\(547\) 12.1962 0.521470 0.260735 0.965410i \(-0.416035\pi\)
0.260735 + 0.965410i \(0.416035\pi\)
\(548\) 0 0
\(549\) −37.4641 −1.59893
\(550\) 0 0
\(551\) −15.7128 −0.669388
\(552\) 0 0
\(553\) −16.7846 −0.713754
\(554\) 0 0
\(555\) −10.9282 −0.463876
\(556\) 0 0
\(557\) 1.85641 0.0786585 0.0393292 0.999226i \(-0.487478\pi\)
0.0393292 + 0.999226i \(0.487478\pi\)
\(558\) 0 0
\(559\) 0.196152 0.00829636
\(560\) 0 0
\(561\) 44.7846 1.89081
\(562\) 0 0
\(563\) 22.0526 0.929405 0.464702 0.885467i \(-0.346161\pi\)
0.464702 + 0.885467i \(0.346161\pi\)
\(564\) 0 0
\(565\) −8.53590 −0.359108
\(566\) 0 0
\(567\) 4.92820 0.206965
\(568\) 0 0
\(569\) −2.53590 −0.106310 −0.0531552 0.998586i \(-0.516928\pi\)
−0.0531552 + 0.998586i \(0.516928\pi\)
\(570\) 0 0
\(571\) −36.3923 −1.52297 −0.761485 0.648182i \(-0.775530\pi\)
−0.761485 + 0.648182i \(0.775530\pi\)
\(572\) 0 0
\(573\) −13.8564 −0.578860
\(574\) 0 0
\(575\) −1.26795 −0.0528771
\(576\) 0 0
\(577\) −4.00000 −0.166522 −0.0832611 0.996528i \(-0.526534\pi\)
−0.0832611 + 0.996528i \(0.526534\pi\)
\(578\) 0 0
\(579\) 27.3205 1.13540
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 0 0
\(583\) 49.1769 2.03670
\(584\) 0 0
\(585\) −4.46410 −0.184568
\(586\) 0 0
\(587\) 8.53590 0.352314 0.176157 0.984362i \(-0.443633\pi\)
0.176157 + 0.984362i \(0.443633\pi\)
\(588\) 0 0
\(589\) −63.1769 −2.60316
\(590\) 0 0
\(591\) 35.3205 1.45289
\(592\) 0 0
\(593\) 26.7846 1.09991 0.549956 0.835194i \(-0.314644\pi\)
0.549956 + 0.835194i \(0.314644\pi\)
\(594\) 0 0
\(595\) −6.92820 −0.284029
\(596\) 0 0
\(597\) 54.6410 2.23631
\(598\) 0 0
\(599\) 7.60770 0.310842 0.155421 0.987848i \(-0.450327\pi\)
0.155421 + 0.987848i \(0.450327\pi\)
\(600\) 0 0
\(601\) 43.5692 1.77723 0.888613 0.458658i \(-0.151670\pi\)
0.888613 + 0.458658i \(0.151670\pi\)
\(602\) 0 0
\(603\) −28.5359 −1.16207
\(604\) 0 0
\(605\) −11.3923 −0.463163
\(606\) 0 0
\(607\) −24.9808 −1.01394 −0.506969 0.861964i \(-0.669234\pi\)
−0.506969 + 0.861964i \(0.669234\pi\)
\(608\) 0 0
\(609\) −13.8564 −0.561490
\(610\) 0 0
\(611\) −6.00000 −0.242734
\(612\) 0 0
\(613\) 26.0000 1.05013 0.525065 0.851062i \(-0.324041\pi\)
0.525065 + 0.851062i \(0.324041\pi\)
\(614\) 0 0
\(615\) 9.46410 0.381629
\(616\) 0 0
\(617\) 33.7128 1.35723 0.678613 0.734496i \(-0.262581\pi\)
0.678613 + 0.734496i \(0.262581\pi\)
\(618\) 0 0
\(619\) −6.98076 −0.280581 −0.140290 0.990110i \(-0.544804\pi\)
−0.140290 + 0.990110i \(0.544804\pi\)
\(620\) 0 0
\(621\) 5.07180 0.203524
\(622\) 0 0
\(623\) 25.8564 1.03592
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −80.1051 −3.19909
\(628\) 0 0
\(629\) 13.8564 0.552491
\(630\) 0 0
\(631\) −5.80385 −0.231048 −0.115524 0.993305i \(-0.536855\pi\)
−0.115524 + 0.993305i \(0.536855\pi\)
\(632\) 0 0
\(633\) 21.8564 0.868714
\(634\) 0 0
\(635\) 16.1962 0.642725
\(636\) 0 0
\(637\) −3.00000 −0.118864
\(638\) 0 0
\(639\) −21.1244 −0.835667
\(640\) 0 0
\(641\) 12.9282 0.510633 0.255317 0.966857i \(-0.417820\pi\)
0.255317 + 0.966857i \(0.417820\pi\)
\(642\) 0 0
\(643\) 6.78461 0.267559 0.133779 0.991011i \(-0.457289\pi\)
0.133779 + 0.991011i \(0.457289\pi\)
\(644\) 0 0
\(645\) 0.535898 0.0211010
\(646\) 0 0
\(647\) −22.0526 −0.866976 −0.433488 0.901159i \(-0.642717\pi\)
−0.433488 + 0.901159i \(0.642717\pi\)
\(648\) 0 0
\(649\) −43.1769 −1.69484
\(650\) 0 0
\(651\) −55.7128 −2.18356
\(652\) 0 0
\(653\) 7.85641 0.307445 0.153722 0.988114i \(-0.450874\pi\)
0.153722 + 0.988114i \(0.450874\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −17.8564 −0.696645
\(658\) 0 0
\(659\) 21.4641 0.836123 0.418061 0.908419i \(-0.362710\pi\)
0.418061 + 0.908419i \(0.362710\pi\)
\(660\) 0 0
\(661\) 10.7846 0.419473 0.209736 0.977758i \(-0.432739\pi\)
0.209736 + 0.977758i \(0.432739\pi\)
\(662\) 0 0
\(663\) 9.46410 0.367555
\(664\) 0 0
\(665\) 12.3923 0.480553
\(666\) 0 0
\(667\) 3.21539 0.124500
\(668\) 0 0
\(669\) 5.46410 0.211254
\(670\) 0 0
\(671\) −39.7128 −1.53310
\(672\) 0 0
\(673\) −14.3923 −0.554783 −0.277391 0.960757i \(-0.589470\pi\)
−0.277391 + 0.960757i \(0.589470\pi\)
\(674\) 0 0
\(675\) −4.00000 −0.153960
\(676\) 0 0
\(677\) 10.3923 0.399409 0.199704 0.979856i \(-0.436002\pi\)
0.199704 + 0.979856i \(0.436002\pi\)
\(678\) 0 0
\(679\) −4.00000 −0.153506
\(680\) 0 0
\(681\) −9.46410 −0.362665
\(682\) 0 0
\(683\) −32.5359 −1.24495 −0.622476 0.782639i \(-0.713873\pi\)
−0.622476 + 0.782639i \(0.713873\pi\)
\(684\) 0 0
\(685\) −0.928203 −0.0354648
\(686\) 0 0
\(687\) −17.4641 −0.666297
\(688\) 0 0
\(689\) 10.3923 0.395915
\(690\) 0 0
\(691\) 47.7654 1.81708 0.908540 0.417797i \(-0.137198\pi\)
0.908540 + 0.417797i \(0.137198\pi\)
\(692\) 0 0
\(693\) −42.2487 −1.60490
\(694\) 0 0
\(695\) 12.3923 0.470067
\(696\) 0 0
\(697\) −12.0000 −0.454532
\(698\) 0 0
\(699\) 16.3923 0.620014
\(700\) 0 0
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) −24.7846 −0.934769
\(704\) 0 0
\(705\) −16.3923 −0.617370
\(706\) 0 0
\(707\) 1.85641 0.0698174
\(708\) 0 0
\(709\) 30.3923 1.14141 0.570703 0.821156i \(-0.306671\pi\)
0.570703 + 0.821156i \(0.306671\pi\)
\(710\) 0 0
\(711\) 37.4641 1.40501
\(712\) 0 0
\(713\) 12.9282 0.484165
\(714\) 0 0
\(715\) −4.73205 −0.176969
\(716\) 0 0
\(717\) −38.7846 −1.44844
\(718\) 0 0
\(719\) 25.8564 0.964281 0.482141 0.876094i \(-0.339859\pi\)
0.482141 + 0.876094i \(0.339859\pi\)
\(720\) 0 0
\(721\) −0.392305 −0.0146102
\(722\) 0 0
\(723\) 6.53590 0.243073
\(724\) 0 0
\(725\) −2.53590 −0.0941809
\(726\) 0 0
\(727\) −44.5885 −1.65369 −0.826847 0.562427i \(-0.809868\pi\)
−0.826847 + 0.562427i \(0.809868\pi\)
\(728\) 0 0
\(729\) −43.7846 −1.62165
\(730\) 0 0
\(731\) −0.679492 −0.0251319
\(732\) 0 0
\(733\) 38.0000 1.40356 0.701781 0.712393i \(-0.252388\pi\)
0.701781 + 0.712393i \(0.252388\pi\)
\(734\) 0 0
\(735\) −8.19615 −0.302320
\(736\) 0 0
\(737\) −30.2487 −1.11423
\(738\) 0 0
\(739\) 18.1962 0.669356 0.334678 0.942332i \(-0.391372\pi\)
0.334678 + 0.942332i \(0.391372\pi\)
\(740\) 0 0
\(741\) −16.9282 −0.621873
\(742\) 0 0
\(743\) 16.1436 0.592251 0.296126 0.955149i \(-0.404305\pi\)
0.296126 + 0.955149i \(0.404305\pi\)
\(744\) 0 0
\(745\) 7.85641 0.287836
\(746\) 0 0
\(747\) 26.7846 0.979998
\(748\) 0 0
\(749\) 35.3205 1.29058
\(750\) 0 0
\(751\) −36.3923 −1.32797 −0.663987 0.747744i \(-0.731137\pi\)
−0.663987 + 0.747744i \(0.731137\pi\)
\(752\) 0 0
\(753\) −58.6410 −2.13700
\(754\) 0 0
\(755\) −1.80385 −0.0656487
\(756\) 0 0
\(757\) −2.39230 −0.0869498 −0.0434749 0.999055i \(-0.513843\pi\)
−0.0434749 + 0.999055i \(0.513843\pi\)
\(758\) 0 0
\(759\) 16.3923 0.595003
\(760\) 0 0
\(761\) −19.8564 −0.719794 −0.359897 0.932992i \(-0.617188\pi\)
−0.359897 + 0.932992i \(0.617188\pi\)
\(762\) 0 0
\(763\) −4.00000 −0.144810
\(764\) 0 0
\(765\) 15.4641 0.559106
\(766\) 0 0
\(767\) −9.12436 −0.329461
\(768\) 0 0
\(769\) 34.7846 1.25437 0.627183 0.778872i \(-0.284208\pi\)
0.627183 + 0.778872i \(0.284208\pi\)
\(770\) 0 0
\(771\) −54.2487 −1.95372
\(772\) 0 0
\(773\) 6.92820 0.249190 0.124595 0.992208i \(-0.460237\pi\)
0.124595 + 0.992208i \(0.460237\pi\)
\(774\) 0 0
\(775\) −10.1962 −0.366257
\(776\) 0 0
\(777\) −21.8564 −0.784094
\(778\) 0 0
\(779\) 21.4641 0.769031
\(780\) 0 0
\(781\) −22.3923 −0.801260
\(782\) 0 0
\(783\) 10.1436 0.362502
\(784\) 0 0
\(785\) 10.0000 0.356915
\(786\) 0 0
\(787\) −31.5692 −1.12532 −0.562661 0.826688i \(-0.690222\pi\)
−0.562661 + 0.826688i \(0.690222\pi\)
\(788\) 0 0
\(789\) 3.46410 0.123325
\(790\) 0 0
\(791\) −17.0718 −0.607003
\(792\) 0 0
\(793\) −8.39230 −0.298019
\(794\) 0 0
\(795\) 28.3923 1.00697
\(796\) 0 0
\(797\) −40.6410 −1.43958 −0.719789 0.694193i \(-0.755762\pi\)
−0.719789 + 0.694193i \(0.755762\pi\)
\(798\) 0 0
\(799\) 20.7846 0.735307
\(800\) 0 0
\(801\) −57.7128 −2.03918
\(802\) 0 0
\(803\) −18.9282 −0.667962
\(804\) 0 0
\(805\) −2.53590 −0.0893787
\(806\) 0 0
\(807\) 54.2487 1.90965
\(808\) 0 0
\(809\) −2.53590 −0.0891574 −0.0445787 0.999006i \(-0.514195\pi\)
−0.0445787 + 0.999006i \(0.514195\pi\)
\(810\) 0 0
\(811\) −17.8038 −0.625178 −0.312589 0.949889i \(-0.601196\pi\)
−0.312589 + 0.949889i \(0.601196\pi\)
\(812\) 0 0
\(813\) 84.6410 2.96849
\(814\) 0 0
\(815\) −14.3923 −0.504140
\(816\) 0 0
\(817\) 1.21539 0.0425211
\(818\) 0 0
\(819\) −8.92820 −0.311977
\(820\) 0 0
\(821\) 28.6410 0.999578 0.499789 0.866147i \(-0.333411\pi\)
0.499789 + 0.866147i \(0.333411\pi\)
\(822\) 0 0
\(823\) 15.4115 0.537213 0.268606 0.963250i \(-0.413437\pi\)
0.268606 + 0.963250i \(0.413437\pi\)
\(824\) 0 0
\(825\) −12.9282 −0.450102
\(826\) 0 0
\(827\) −18.0000 −0.625921 −0.312961 0.949766i \(-0.601321\pi\)
−0.312961 + 0.949766i \(0.601321\pi\)
\(828\) 0 0
\(829\) 0.392305 0.0136253 0.00681266 0.999977i \(-0.497831\pi\)
0.00681266 + 0.999977i \(0.497831\pi\)
\(830\) 0 0
\(831\) 72.1051 2.50130
\(832\) 0 0
\(833\) 10.3923 0.360072
\(834\) 0 0
\(835\) −0.928203 −0.0321218
\(836\) 0 0
\(837\) 40.7846 1.40972
\(838\) 0 0
\(839\) −0.339746 −0.0117293 −0.00586467 0.999983i \(-0.501867\pi\)
−0.00586467 + 0.999983i \(0.501867\pi\)
\(840\) 0 0
\(841\) −22.5692 −0.778249
\(842\) 0 0
\(843\) −61.1769 −2.10704
\(844\) 0 0
\(845\) −1.00000 −0.0344010
\(846\) 0 0
\(847\) −22.7846 −0.782888
\(848\) 0 0
\(849\) 89.0333 3.05562
\(850\) 0 0
\(851\) 5.07180 0.173859
\(852\) 0 0
\(853\) 8.00000 0.273915 0.136957 0.990577i \(-0.456268\pi\)
0.136957 + 0.990577i \(0.456268\pi\)
\(854\) 0 0
\(855\) −27.6603 −0.945961
\(856\) 0 0
\(857\) −35.5692 −1.21502 −0.607511 0.794311i \(-0.707832\pi\)
−0.607511 + 0.794311i \(0.707832\pi\)
\(858\) 0 0
\(859\) 17.1769 0.586069 0.293034 0.956102i \(-0.405335\pi\)
0.293034 + 0.956102i \(0.405335\pi\)
\(860\) 0 0
\(861\) 18.9282 0.645071
\(862\) 0 0
\(863\) 38.7846 1.32024 0.660122 0.751159i \(-0.270505\pi\)
0.660122 + 0.751159i \(0.270505\pi\)
\(864\) 0 0
\(865\) −8.53590 −0.290229
\(866\) 0 0
\(867\) 13.6603 0.463927
\(868\) 0 0
\(869\) 39.7128 1.34716
\(870\) 0 0
\(871\) −6.39230 −0.216595
\(872\) 0 0
\(873\) 8.92820 0.302174
\(874\) 0 0
\(875\) 2.00000 0.0676123
\(876\) 0 0
\(877\) 2.00000 0.0675352 0.0337676 0.999430i \(-0.489249\pi\)
0.0337676 + 0.999430i \(0.489249\pi\)
\(878\) 0 0
\(879\) 13.8564 0.467365
\(880\) 0 0
\(881\) −47.3205 −1.59427 −0.797134 0.603802i \(-0.793652\pi\)
−0.797134 + 0.603802i \(0.793652\pi\)
\(882\) 0 0
\(883\) −23.8038 −0.801063 −0.400532 0.916283i \(-0.631175\pi\)
−0.400532 + 0.916283i \(0.631175\pi\)
\(884\) 0 0
\(885\) −24.9282 −0.837952
\(886\) 0 0
\(887\) 47.9090 1.60863 0.804313 0.594206i \(-0.202534\pi\)
0.804313 + 0.594206i \(0.202534\pi\)
\(888\) 0 0
\(889\) 32.3923 1.08640
\(890\) 0 0
\(891\) −11.6603 −0.390633
\(892\) 0 0
\(893\) −37.1769 −1.24408
\(894\) 0 0
\(895\) −18.9282 −0.632700
\(896\) 0 0
\(897\) 3.46410 0.115663
\(898\) 0 0
\(899\) 25.8564 0.862359
\(900\) 0 0
\(901\) −36.0000 −1.19933
\(902\) 0 0
\(903\) 1.07180 0.0356672
\(904\) 0 0
\(905\) −0.392305 −0.0130407
\(906\) 0 0
\(907\) 53.7654 1.78525 0.892625 0.450800i \(-0.148861\pi\)
0.892625 + 0.450800i \(0.148861\pi\)
\(908\) 0 0
\(909\) −4.14359 −0.137434
\(910\) 0 0
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) 0 0
\(913\) 28.3923 0.939648
\(914\) 0 0
\(915\) −22.9282 −0.757983
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −9.17691 −0.302718 −0.151359 0.988479i \(-0.548365\pi\)
−0.151359 + 0.988479i \(0.548365\pi\)
\(920\) 0 0
\(921\) −51.3205 −1.69107
\(922\) 0 0
\(923\) −4.73205 −0.155757
\(924\) 0 0
\(925\) −4.00000 −0.131519
\(926\) 0 0
\(927\) 0.875644 0.0287599
\(928\) 0 0
\(929\) 44.5359 1.46118 0.730588 0.682819i \(-0.239246\pi\)
0.730588 + 0.682819i \(0.239246\pi\)
\(930\) 0 0
\(931\) −18.5885 −0.609212
\(932\) 0 0
\(933\) −44.7846 −1.46618
\(934\) 0 0
\(935\) 16.3923 0.536086
\(936\) 0 0
\(937\) 34.7846 1.13636 0.568182 0.822903i \(-0.307647\pi\)
0.568182 + 0.822903i \(0.307647\pi\)
\(938\) 0 0
\(939\) 39.3205 1.28318
\(940\) 0 0
\(941\) 31.1769 1.01634 0.508169 0.861257i \(-0.330322\pi\)
0.508169 + 0.861257i \(0.330322\pi\)
\(942\) 0 0
\(943\) −4.39230 −0.143033
\(944\) 0 0
\(945\) −8.00000 −0.260240
\(946\) 0 0
\(947\) −40.6410 −1.32066 −0.660328 0.750978i \(-0.729583\pi\)
−0.660328 + 0.750978i \(0.729583\pi\)
\(948\) 0 0
\(949\) −4.00000 −0.129845
\(950\) 0 0
\(951\) −65.5692 −2.12623
\(952\) 0 0
\(953\) 0.928203 0.0300675 0.0150337 0.999887i \(-0.495214\pi\)
0.0150337 + 0.999887i \(0.495214\pi\)
\(954\) 0 0
\(955\) −5.07180 −0.164119
\(956\) 0 0
\(957\) 32.7846 1.05978
\(958\) 0 0
\(959\) −1.85641 −0.0599465
\(960\) 0 0
\(961\) 72.9615 2.35360
\(962\) 0 0
\(963\) −78.8372 −2.54049
\(964\) 0 0
\(965\) 10.0000 0.321911
\(966\) 0 0
\(967\) 50.3923 1.62051 0.810254 0.586079i \(-0.199329\pi\)
0.810254 + 0.586079i \(0.199329\pi\)
\(968\) 0 0
\(969\) 58.6410 1.88382
\(970\) 0 0
\(971\) −18.9282 −0.607435 −0.303717 0.952762i \(-0.598228\pi\)
−0.303717 + 0.952762i \(0.598228\pi\)
\(972\) 0 0
\(973\) 24.7846 0.794558
\(974\) 0 0
\(975\) −2.73205 −0.0874957
\(976\) 0 0
\(977\) −15.7128 −0.502697 −0.251349 0.967897i \(-0.580874\pi\)
−0.251349 + 0.967897i \(0.580874\pi\)
\(978\) 0 0
\(979\) −61.1769 −1.95522
\(980\) 0 0
\(981\) 8.92820 0.285056
\(982\) 0 0
\(983\) 34.3923 1.09694 0.548472 0.836169i \(-0.315210\pi\)
0.548472 + 0.836169i \(0.315210\pi\)
\(984\) 0 0
\(985\) 12.9282 0.411927
\(986\) 0 0
\(987\) −32.7846 −1.04355
\(988\) 0 0
\(989\) −0.248711 −0.00790856
\(990\) 0 0
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) 0 0
\(993\) 7.07180 0.224417
\(994\) 0 0
\(995\) 20.0000 0.634043
\(996\) 0 0
\(997\) 33.6077 1.06437 0.532183 0.846629i \(-0.321372\pi\)
0.532183 + 0.846629i \(0.321372\pi\)
\(998\) 0 0
\(999\) 16.0000 0.506218
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.2.a.h.1.1 2
3.2 odd 2 9360.2.a.cm.1.1 2
4.3 odd 2 65.2.a.c.1.1 2
5.4 even 2 5200.2.a.ca.1.2 2
8.3 odd 2 4160.2.a.y.1.1 2
8.5 even 2 4160.2.a.bj.1.2 2
12.11 even 2 585.2.a.k.1.2 2
20.3 even 4 325.2.b.e.274.4 4
20.7 even 4 325.2.b.e.274.1 4
20.19 odd 2 325.2.a.g.1.2 2
28.27 even 2 3185.2.a.k.1.1 2
44.43 even 2 7865.2.a.h.1.2 2
52.3 odd 6 845.2.e.e.191.2 4
52.7 even 12 845.2.m.a.361.1 4
52.11 even 12 845.2.m.c.316.1 4
52.15 even 12 845.2.m.a.316.1 4
52.19 even 12 845.2.m.c.361.1 4
52.23 odd 6 845.2.e.f.191.1 4
52.31 even 4 845.2.c.e.506.4 4
52.35 odd 6 845.2.e.e.146.2 4
52.43 odd 6 845.2.e.f.146.1 4
52.47 even 4 845.2.c.e.506.2 4
52.51 odd 2 845.2.a.d.1.2 2
60.23 odd 4 2925.2.c.v.2224.1 4
60.47 odd 4 2925.2.c.v.2224.4 4
60.59 even 2 2925.2.a.z.1.1 2
156.155 even 2 7605.2.a.be.1.1 2
260.259 odd 2 4225.2.a.w.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.a.c.1.1 2 4.3 odd 2
325.2.a.g.1.2 2 20.19 odd 2
325.2.b.e.274.1 4 20.7 even 4
325.2.b.e.274.4 4 20.3 even 4
585.2.a.k.1.2 2 12.11 even 2
845.2.a.d.1.2 2 52.51 odd 2
845.2.c.e.506.2 4 52.47 even 4
845.2.c.e.506.4 4 52.31 even 4
845.2.e.e.146.2 4 52.35 odd 6
845.2.e.e.191.2 4 52.3 odd 6
845.2.e.f.146.1 4 52.43 odd 6
845.2.e.f.191.1 4 52.23 odd 6
845.2.m.a.316.1 4 52.15 even 12
845.2.m.a.361.1 4 52.7 even 12
845.2.m.c.316.1 4 52.11 even 12
845.2.m.c.361.1 4 52.19 even 12
1040.2.a.h.1.1 2 1.1 even 1 trivial
2925.2.a.z.1.1 2 60.59 even 2
2925.2.c.v.2224.1 4 60.23 odd 4
2925.2.c.v.2224.4 4 60.47 odd 4
3185.2.a.k.1.1 2 28.27 even 2
4160.2.a.y.1.1 2 8.3 odd 2
4160.2.a.bj.1.2 2 8.5 even 2
4225.2.a.w.1.1 2 260.259 odd 2
5200.2.a.ca.1.2 2 5.4 even 2
7605.2.a.be.1.1 2 156.155 even 2
7865.2.a.h.1.2 2 44.43 even 2
9360.2.a.cm.1.1 2 3.2 odd 2