Properties

Label 845.2.e.f.191.1
Level $845$
Weight $2$
Character 845.191
Analytic conductor $6.747$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(146,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.146");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 191.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 845.191
Dual form 845.2.e.f.146.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 1.50000i) q^{2} +(-1.36603 + 2.36603i) q^{3} +(-0.500000 - 0.866025i) q^{4} +1.00000 q^{5} +(-2.36603 - 4.09808i) q^{6} +(1.00000 + 1.73205i) q^{7} -1.73205 q^{8} +(-2.23205 - 3.86603i) q^{9} +(-0.866025 + 1.50000i) q^{10} +(-2.36603 + 4.09808i) q^{11} +2.73205 q^{12} -3.46410 q^{14} +(-1.36603 + 2.36603i) q^{15} +(2.50000 - 4.33013i) q^{16} +(1.73205 + 3.00000i) q^{17} +7.73205 q^{18} +(-3.09808 - 5.36603i) q^{19} +(-0.500000 - 0.866025i) q^{20} -5.46410 q^{21} +(-4.09808 - 7.09808i) q^{22} +(-0.633975 + 1.09808i) q^{23} +(2.36603 - 4.09808i) q^{24} +1.00000 q^{25} +4.00000 q^{27} +(1.00000 - 1.73205i) q^{28} +(1.26795 - 2.19615i) q^{29} +(-2.36603 - 4.09808i) q^{30} -10.1962 q^{31} +(2.59808 + 4.50000i) q^{32} +(-6.46410 - 11.1962i) q^{33} -6.00000 q^{34} +(1.00000 + 1.73205i) q^{35} +(-2.23205 + 3.86603i) q^{36} +(-2.00000 + 3.46410i) q^{37} +10.7321 q^{38} -1.73205 q^{40} +(1.73205 - 3.00000i) q^{41} +(4.73205 - 8.19615i) q^{42} +(0.0980762 + 0.169873i) q^{43} +4.73205 q^{44} +(-2.23205 - 3.86603i) q^{45} +(-1.09808 - 1.90192i) q^{46} -6.00000 q^{47} +(6.83013 + 11.8301i) q^{48} +(1.50000 - 2.59808i) q^{49} +(-0.866025 + 1.50000i) q^{50} -9.46410 q^{51} +10.3923 q^{53} +(-3.46410 + 6.00000i) q^{54} +(-2.36603 + 4.09808i) q^{55} +(-1.73205 - 3.00000i) q^{56} +16.9282 q^{57} +(2.19615 + 3.80385i) q^{58} +(4.56218 + 7.90192i) q^{59} +2.73205 q^{60} +(4.19615 + 7.26795i) q^{61} +(8.83013 - 15.2942i) q^{62} +(4.46410 - 7.73205i) q^{63} +1.00000 q^{64} +22.3923 q^{66} +(3.19615 - 5.53590i) q^{67} +(1.73205 - 3.00000i) q^{68} +(-1.73205 - 3.00000i) q^{69} -3.46410 q^{70} +(2.36603 + 4.09808i) q^{71} +(3.86603 + 6.69615i) q^{72} +4.00000 q^{73} +(-3.46410 - 6.00000i) q^{74} +(-1.36603 + 2.36603i) q^{75} +(-3.09808 + 5.36603i) q^{76} -9.46410 q^{77} -8.39230 q^{79} +(2.50000 - 4.33013i) q^{80} +(1.23205 - 2.13397i) q^{81} +(3.00000 + 5.19615i) q^{82} +6.00000 q^{83} +(2.73205 + 4.73205i) q^{84} +(1.73205 + 3.00000i) q^{85} -0.339746 q^{86} +(3.46410 + 6.00000i) q^{87} +(4.09808 - 7.09808i) q^{88} +(-6.46410 + 11.1962i) q^{89} +7.73205 q^{90} +1.26795 q^{92} +(13.9282 - 24.1244i) q^{93} +(5.19615 - 9.00000i) q^{94} +(-3.09808 - 5.36603i) q^{95} -14.1962 q^{96} +(1.00000 + 1.73205i) q^{97} +(2.59808 + 4.50000i) q^{98} +21.1244 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 2 q^{4} + 4 q^{5} - 6 q^{6} + 4 q^{7} - 2 q^{9} - 6 q^{11} + 4 q^{12} - 2 q^{15} + 10 q^{16} + 24 q^{18} - 2 q^{19} - 2 q^{20} - 8 q^{21} - 6 q^{22} - 6 q^{23} + 6 q^{24} + 4 q^{25} + 16 q^{27}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 1.50000i −0.612372 + 1.06066i 0.378467 + 0.925615i \(0.376451\pi\)
−0.990839 + 0.135045i \(0.956882\pi\)
\(3\) −1.36603 + 2.36603i −0.788675 + 1.36603i 0.138104 + 0.990418i \(0.455899\pi\)
−0.926779 + 0.375608i \(0.877434\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.00000 0.447214
\(6\) −2.36603 4.09808i −0.965926 1.67303i
\(7\) 1.00000 + 1.73205i 0.377964 + 0.654654i 0.990766 0.135583i \(-0.0432908\pi\)
−0.612801 + 0.790237i \(0.709957\pi\)
\(8\) −1.73205 −0.612372
\(9\) −2.23205 3.86603i −0.744017 1.28868i
\(10\) −0.866025 + 1.50000i −0.273861 + 0.474342i
\(11\) −2.36603 + 4.09808i −0.713384 + 1.23562i 0.250196 + 0.968195i \(0.419505\pi\)
−0.963580 + 0.267421i \(0.913828\pi\)
\(12\) 2.73205 0.788675
\(13\) 0 0
\(14\) −3.46410 −0.925820
\(15\) −1.36603 + 2.36603i −0.352706 + 0.610905i
\(16\) 2.50000 4.33013i 0.625000 1.08253i
\(17\) 1.73205 + 3.00000i 0.420084 + 0.727607i 0.995947 0.0899392i \(-0.0286673\pi\)
−0.575863 + 0.817546i \(0.695334\pi\)
\(18\) 7.73205 1.82246
\(19\) −3.09808 5.36603i −0.710747 1.23105i −0.964577 0.263802i \(-0.915024\pi\)
0.253830 0.967249i \(-0.418310\pi\)
\(20\) −0.500000 0.866025i −0.111803 0.193649i
\(21\) −5.46410 −1.19236
\(22\) −4.09808 7.09808i −0.873713 1.51331i
\(23\) −0.633975 + 1.09808i −0.132193 + 0.228965i −0.924522 0.381130i \(-0.875535\pi\)
0.792329 + 0.610094i \(0.208868\pi\)
\(24\) 2.36603 4.09808i 0.482963 0.836516i
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 4.00000 0.769800
\(28\) 1.00000 1.73205i 0.188982 0.327327i
\(29\) 1.26795 2.19615i 0.235452 0.407815i −0.723952 0.689851i \(-0.757676\pi\)
0.959404 + 0.282035i \(0.0910095\pi\)
\(30\) −2.36603 4.09808i −0.431975 0.748203i
\(31\) −10.1962 −1.83128 −0.915642 0.401996i \(-0.868317\pi\)
−0.915642 + 0.401996i \(0.868317\pi\)
\(32\) 2.59808 + 4.50000i 0.459279 + 0.795495i
\(33\) −6.46410 11.1962i −1.12526 1.94900i
\(34\) −6.00000 −1.02899
\(35\) 1.00000 + 1.73205i 0.169031 + 0.292770i
\(36\) −2.23205 + 3.86603i −0.372008 + 0.644338i
\(37\) −2.00000 + 3.46410i −0.328798 + 0.569495i −0.982274 0.187453i \(-0.939977\pi\)
0.653476 + 0.756948i \(0.273310\pi\)
\(38\) 10.7321 1.74097
\(39\) 0 0
\(40\) −1.73205 −0.273861
\(41\) 1.73205 3.00000i 0.270501 0.468521i −0.698489 0.715621i \(-0.746144\pi\)
0.968990 + 0.247099i \(0.0794774\pi\)
\(42\) 4.73205 8.19615i 0.730171 1.26469i
\(43\) 0.0980762 + 0.169873i 0.0149565 + 0.0259054i 0.873407 0.486991i \(-0.161906\pi\)
−0.858450 + 0.512897i \(0.828572\pi\)
\(44\) 4.73205 0.713384
\(45\) −2.23205 3.86603i −0.332734 0.576313i
\(46\) −1.09808 1.90192i −0.161903 0.280423i
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 6.83013 + 11.8301i 0.985844 + 1.70753i
\(49\) 1.50000 2.59808i 0.214286 0.371154i
\(50\) −0.866025 + 1.50000i −0.122474 + 0.212132i
\(51\) −9.46410 −1.32524
\(52\) 0 0
\(53\) 10.3923 1.42749 0.713746 0.700404i \(-0.246997\pi\)
0.713746 + 0.700404i \(0.246997\pi\)
\(54\) −3.46410 + 6.00000i −0.471405 + 0.816497i
\(55\) −2.36603 + 4.09808i −0.319035 + 0.552584i
\(56\) −1.73205 3.00000i −0.231455 0.400892i
\(57\) 16.9282 2.24220
\(58\) 2.19615 + 3.80385i 0.288369 + 0.499470i
\(59\) 4.56218 + 7.90192i 0.593945 + 1.02874i 0.993695 + 0.112119i \(0.0357637\pi\)
−0.399750 + 0.916624i \(0.630903\pi\)
\(60\) 2.73205 0.352706
\(61\) 4.19615 + 7.26795i 0.537262 + 0.930566i 0.999050 + 0.0435752i \(0.0138748\pi\)
−0.461788 + 0.886990i \(0.652792\pi\)
\(62\) 8.83013 15.2942i 1.12143 1.94237i
\(63\) 4.46410 7.73205i 0.562424 0.974147i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 22.3923 2.75630
\(67\) 3.19615 5.53590i 0.390472 0.676318i −0.602040 0.798466i \(-0.705645\pi\)
0.992512 + 0.122149i \(0.0389784\pi\)
\(68\) 1.73205 3.00000i 0.210042 0.363803i
\(69\) −1.73205 3.00000i −0.208514 0.361158i
\(70\) −3.46410 −0.414039
\(71\) 2.36603 + 4.09808i 0.280796 + 0.486352i 0.971581 0.236708i \(-0.0760684\pi\)
−0.690785 + 0.723060i \(0.742735\pi\)
\(72\) 3.86603 + 6.69615i 0.455615 + 0.789149i
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) −3.46410 6.00000i −0.402694 0.697486i
\(75\) −1.36603 + 2.36603i −0.157735 + 0.273205i
\(76\) −3.09808 + 5.36603i −0.355374 + 0.615525i
\(77\) −9.46410 −1.07853
\(78\) 0 0
\(79\) −8.39230 −0.944208 −0.472104 0.881543i \(-0.656505\pi\)
−0.472104 + 0.881543i \(0.656505\pi\)
\(80\) 2.50000 4.33013i 0.279508 0.484123i
\(81\) 1.23205 2.13397i 0.136895 0.237108i
\(82\) 3.00000 + 5.19615i 0.331295 + 0.573819i
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 2.73205 + 4.73205i 0.298091 + 0.516309i
\(85\) 1.73205 + 3.00000i 0.187867 + 0.325396i
\(86\) −0.339746 −0.0366357
\(87\) 3.46410 + 6.00000i 0.371391 + 0.643268i
\(88\) 4.09808 7.09808i 0.436856 0.756657i
\(89\) −6.46410 + 11.1962i −0.685193 + 1.18679i 0.288183 + 0.957575i \(0.406949\pi\)
−0.973376 + 0.229214i \(0.926384\pi\)
\(90\) 7.73205 0.815030
\(91\) 0 0
\(92\) 1.26795 0.132193
\(93\) 13.9282 24.1244i 1.44429 2.50158i
\(94\) 5.19615 9.00000i 0.535942 0.928279i
\(95\) −3.09808 5.36603i −0.317856 0.550543i
\(96\) −14.1962 −1.44889
\(97\) 1.00000 + 1.73205i 0.101535 + 0.175863i 0.912317 0.409484i \(-0.134291\pi\)
−0.810782 + 0.585348i \(0.800958\pi\)
\(98\) 2.59808 + 4.50000i 0.262445 + 0.454569i
\(99\) 21.1244 2.12308
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) 0.464102 0.803848i 0.0461798 0.0799858i −0.842012 0.539459i \(-0.818629\pi\)
0.888191 + 0.459474i \(0.151962\pi\)
\(102\) 8.19615 14.1962i 0.811540 1.40563i
\(103\) −0.196152 −0.0193275 −0.00966374 0.999953i \(-0.503076\pi\)
−0.00966374 + 0.999953i \(0.503076\pi\)
\(104\) 0 0
\(105\) −5.46410 −0.533242
\(106\) −9.00000 + 15.5885i −0.874157 + 1.51408i
\(107\) −8.83013 + 15.2942i −0.853641 + 1.47855i 0.0242598 + 0.999706i \(0.492277\pi\)
−0.877900 + 0.478843i \(0.841056\pi\)
\(108\) −2.00000 3.46410i −0.192450 0.333333i
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) −4.09808 7.09808i −0.390736 0.676775i
\(111\) −5.46410 9.46410i −0.518630 0.898293i
\(112\) 10.0000 0.944911
\(113\) −4.26795 7.39230i −0.401495 0.695410i 0.592412 0.805635i \(-0.298176\pi\)
−0.993907 + 0.110226i \(0.964843\pi\)
\(114\) −14.6603 + 25.3923i −1.37306 + 2.37821i
\(115\) −0.633975 + 1.09808i −0.0591184 + 0.102396i
\(116\) −2.53590 −0.235452
\(117\) 0 0
\(118\) −15.8038 −1.45486
\(119\) −3.46410 + 6.00000i −0.317554 + 0.550019i
\(120\) 2.36603 4.09808i 0.215988 0.374101i
\(121\) −5.69615 9.86603i −0.517832 0.896911i
\(122\) −14.5359 −1.31602
\(123\) 4.73205 + 8.19615i 0.426675 + 0.739022i
\(124\) 5.09808 + 8.83013i 0.457821 + 0.792969i
\(125\) 1.00000 0.0894427
\(126\) 7.73205 + 13.3923i 0.688826 + 1.19308i
\(127\) −8.09808 + 14.0263i −0.718588 + 1.24463i 0.242971 + 0.970034i \(0.421878\pi\)
−0.961559 + 0.274598i \(0.911455\pi\)
\(128\) −6.06218 + 10.5000i −0.535826 + 0.928078i
\(129\) −0.535898 −0.0471832
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) −6.46410 + 11.1962i −0.562628 + 0.974500i
\(133\) 6.19615 10.7321i 0.537275 0.930587i
\(134\) 5.53590 + 9.58846i 0.478229 + 0.828317i
\(135\) 4.00000 0.344265
\(136\) −3.00000 5.19615i −0.257248 0.445566i
\(137\) 0.464102 + 0.803848i 0.0396509 + 0.0686773i 0.885170 0.465268i \(-0.154042\pi\)
−0.845519 + 0.533945i \(0.820709\pi\)
\(138\) 6.00000 0.510754
\(139\) −6.19615 10.7321i −0.525551 0.910281i −0.999557 0.0297592i \(-0.990526\pi\)
0.474006 0.880521i \(-0.342807\pi\)
\(140\) 1.00000 1.73205i 0.0845154 0.146385i
\(141\) 8.19615 14.1962i 0.690241 1.19553i
\(142\) −8.19615 −0.687806
\(143\) 0 0
\(144\) −22.3205 −1.86004
\(145\) 1.26795 2.19615i 0.105297 0.182381i
\(146\) −3.46410 + 6.00000i −0.286691 + 0.496564i
\(147\) 4.09808 + 7.09808i 0.338004 + 0.585439i
\(148\) 4.00000 0.328798
\(149\) −3.92820 6.80385i −0.321811 0.557393i 0.659051 0.752098i \(-0.270958\pi\)
−0.980862 + 0.194706i \(0.937625\pi\)
\(150\) −2.36603 4.09808i −0.193185 0.334607i
\(151\) 1.80385 0.146795 0.0733975 0.997303i \(-0.476616\pi\)
0.0733975 + 0.997303i \(0.476616\pi\)
\(152\) 5.36603 + 9.29423i 0.435242 + 0.753861i
\(153\) 7.73205 13.3923i 0.625099 1.08270i
\(154\) 8.19615 14.1962i 0.660465 1.14396i
\(155\) −10.1962 −0.818975
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) 7.26795 12.5885i 0.578207 1.00148i
\(159\) −14.1962 + 24.5885i −1.12583 + 1.94999i
\(160\) 2.59808 + 4.50000i 0.205396 + 0.355756i
\(161\) −2.53590 −0.199857
\(162\) 2.13397 + 3.69615i 0.167661 + 0.290397i
\(163\) −7.19615 12.4641i −0.563646 0.976264i −0.997174 0.0751237i \(-0.976065\pi\)
0.433528 0.901140i \(-0.357269\pi\)
\(164\) −3.46410 −0.270501
\(165\) −6.46410 11.1962i −0.503230 0.871619i
\(166\) −5.19615 + 9.00000i −0.403300 + 0.698535i
\(167\) −0.464102 + 0.803848i −0.0359133 + 0.0622036i −0.883423 0.468576i \(-0.844767\pi\)
0.847510 + 0.530779i \(0.178101\pi\)
\(168\) 9.46410 0.730171
\(169\) 0 0
\(170\) −6.00000 −0.460179
\(171\) −13.8301 + 23.9545i −1.05762 + 1.83185i
\(172\) 0.0980762 0.169873i 0.00747824 0.0129527i
\(173\) −4.26795 7.39230i −0.324486 0.562027i 0.656922 0.753958i \(-0.271858\pi\)
−0.981408 + 0.191932i \(0.938525\pi\)
\(174\) −12.0000 −0.909718
\(175\) 1.00000 + 1.73205i 0.0755929 + 0.130931i
\(176\) 11.8301 + 20.4904i 0.891729 + 1.54452i
\(177\) −24.9282 −1.87372
\(178\) −11.1962 19.3923i −0.839187 1.45351i
\(179\) 9.46410 16.3923i 0.707380 1.22522i −0.258446 0.966026i \(-0.583210\pi\)
0.965826 0.259193i \(-0.0834564\pi\)
\(180\) −2.23205 + 3.86603i −0.166367 + 0.288157i
\(181\) 0.392305 0.0291598 0.0145799 0.999894i \(-0.495359\pi\)
0.0145799 + 0.999894i \(0.495359\pi\)
\(182\) 0 0
\(183\) −22.9282 −1.69490
\(184\) 1.09808 1.90192i 0.0809513 0.140212i
\(185\) −2.00000 + 3.46410i −0.147043 + 0.254686i
\(186\) 24.1244 + 41.7846i 1.76888 + 3.06380i
\(187\) −16.3923 −1.19872
\(188\) 3.00000 + 5.19615i 0.218797 + 0.378968i
\(189\) 4.00000 + 6.92820i 0.290957 + 0.503953i
\(190\) 10.7321 0.778585
\(191\) 2.53590 + 4.39230i 0.183491 + 0.317816i 0.943067 0.332603i \(-0.107927\pi\)
−0.759576 + 0.650419i \(0.774593\pi\)
\(192\) −1.36603 + 2.36603i −0.0985844 + 0.170753i
\(193\) −5.00000 + 8.66025i −0.359908 + 0.623379i −0.987945 0.154805i \(-0.950525\pi\)
0.628037 + 0.778183i \(0.283859\pi\)
\(194\) −3.46410 −0.248708
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) −6.46410 + 11.1962i −0.460548 + 0.797693i −0.998988 0.0449709i \(-0.985680\pi\)
0.538440 + 0.842664i \(0.319014\pi\)
\(198\) −18.2942 + 31.6865i −1.30011 + 2.25186i
\(199\) −10.0000 17.3205i −0.708881 1.22782i −0.965272 0.261245i \(-0.915867\pi\)
0.256391 0.966573i \(-0.417466\pi\)
\(200\) −1.73205 −0.122474
\(201\) 8.73205 + 15.1244i 0.615911 + 1.06679i
\(202\) 0.803848 + 1.39230i 0.0565585 + 0.0979622i
\(203\) 5.07180 0.355970
\(204\) 4.73205 + 8.19615i 0.331310 + 0.573845i
\(205\) 1.73205 3.00000i 0.120972 0.209529i
\(206\) 0.169873 0.294229i 0.0118356 0.0204999i
\(207\) 5.66025 0.393415
\(208\) 0 0
\(209\) 29.3205 2.02814
\(210\) 4.73205 8.19615i 0.326543 0.565588i
\(211\) −4.00000 + 6.92820i −0.275371 + 0.476957i −0.970229 0.242190i \(-0.922134\pi\)
0.694857 + 0.719148i \(0.255467\pi\)
\(212\) −5.19615 9.00000i −0.356873 0.618123i
\(213\) −12.9282 −0.885826
\(214\) −15.2942 26.4904i −1.04549 1.81085i
\(215\) 0.0980762 + 0.169873i 0.00668874 + 0.0115852i
\(216\) −6.92820 −0.471405
\(217\) −10.1962 17.6603i −0.692160 1.19886i
\(218\) 1.73205 3.00000i 0.117309 0.203186i
\(219\) −5.46410 + 9.46410i −0.369230 + 0.639525i
\(220\) 4.73205 0.319035
\(221\) 0 0
\(222\) 18.9282 1.27038
\(223\) 1.00000 1.73205i 0.0669650 0.115987i −0.830599 0.556871i \(-0.812002\pi\)
0.897564 + 0.440884i \(0.145335\pi\)
\(224\) −5.19615 + 9.00000i −0.347183 + 0.601338i
\(225\) −2.23205 3.86603i −0.148803 0.257735i
\(226\) 14.7846 0.983458
\(227\) −1.73205 3.00000i −0.114960 0.199117i 0.802804 0.596244i \(-0.203341\pi\)
−0.917764 + 0.397127i \(0.870007\pi\)
\(228\) −8.46410 14.6603i −0.560549 0.970899i
\(229\) −6.39230 −0.422415 −0.211208 0.977441i \(-0.567740\pi\)
−0.211208 + 0.977441i \(0.567740\pi\)
\(230\) −1.09808 1.90192i −0.0724050 0.125409i
\(231\) 12.9282 22.3923i 0.850613 1.47331i
\(232\) −2.19615 + 3.80385i −0.144184 + 0.249735i
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) −6.00000 −0.391397
\(236\) 4.56218 7.90192i 0.296972 0.514371i
\(237\) 11.4641 19.8564i 0.744673 1.28981i
\(238\) −6.00000 10.3923i −0.388922 0.673633i
\(239\) 14.1962 0.918273 0.459136 0.888366i \(-0.348159\pi\)
0.459136 + 0.888366i \(0.348159\pi\)
\(240\) 6.83013 + 11.8301i 0.440883 + 0.763631i
\(241\) −1.19615 2.07180i −0.0770510 0.133456i 0.824925 0.565242i \(-0.191217\pi\)
−0.901976 + 0.431785i \(0.857884\pi\)
\(242\) 19.7321 1.26842
\(243\) 9.36603 + 16.2224i 0.600831 + 1.04067i
\(244\) 4.19615 7.26795i 0.268631 0.465283i
\(245\) 1.50000 2.59808i 0.0958315 0.165985i
\(246\) −16.3923 −1.04514
\(247\) 0 0
\(248\) 17.6603 1.12143
\(249\) −8.19615 + 14.1962i −0.519410 + 0.899645i
\(250\) −0.866025 + 1.50000i −0.0547723 + 0.0948683i
\(251\) 10.7321 + 18.5885i 0.677401 + 1.17329i 0.975761 + 0.218840i \(0.0702271\pi\)
−0.298360 + 0.954453i \(0.596440\pi\)
\(252\) −8.92820 −0.562424
\(253\) −3.00000 5.19615i −0.188608 0.326679i
\(254\) −14.0263 24.2942i −0.880087 1.52436i
\(255\) −9.46410 −0.592665
\(256\) −9.50000 16.4545i −0.593750 1.02841i
\(257\) −9.92820 + 17.1962i −0.619304 + 1.07267i 0.370309 + 0.928909i \(0.379252\pi\)
−0.989613 + 0.143758i \(0.954081\pi\)
\(258\) 0.464102 0.803848i 0.0288937 0.0500454i
\(259\) −8.00000 −0.497096
\(260\) 0 0
\(261\) −11.3205 −0.700722
\(262\) 0 0
\(263\) −0.633975 + 1.09808i −0.0390925 + 0.0677103i −0.884910 0.465763i \(-0.845780\pi\)
0.845817 + 0.533473i \(0.179113\pi\)
\(264\) 11.1962 + 19.3923i 0.689076 + 1.19351i
\(265\) 10.3923 0.638394
\(266\) 10.7321 + 18.5885i 0.658024 + 1.13973i
\(267\) −17.6603 30.5885i −1.08079 1.87198i
\(268\) −6.39230 −0.390472
\(269\) 9.92820 + 17.1962i 0.605333 + 1.04847i 0.991999 + 0.126248i \(0.0402935\pi\)
−0.386665 + 0.922220i \(0.626373\pi\)
\(270\) −3.46410 + 6.00000i −0.210819 + 0.365148i
\(271\) 15.4904 26.8301i 0.940974 1.62981i 0.177355 0.984147i \(-0.443246\pi\)
0.763619 0.645667i \(-0.223421\pi\)
\(272\) 17.3205 1.05021
\(273\) 0 0
\(274\) −1.60770 −0.0971244
\(275\) −2.36603 + 4.09808i −0.142677 + 0.247123i
\(276\) −1.73205 + 3.00000i −0.104257 + 0.180579i
\(277\) 13.1962 + 22.8564i 0.792880 + 1.37331i 0.924177 + 0.381965i \(0.124753\pi\)
−0.131297 + 0.991343i \(0.541914\pi\)
\(278\) 21.4641 1.28733
\(279\) 22.7583 + 39.4186i 1.36251 + 2.35993i
\(280\) −1.73205 3.00000i −0.103510 0.179284i
\(281\) −22.3923 −1.33581 −0.667906 0.744245i \(-0.732809\pi\)
−0.667906 + 0.744245i \(0.732809\pi\)
\(282\) 14.1962 + 24.5885i 0.845369 + 1.46422i
\(283\) −16.2942 + 28.2224i −0.968591 + 1.67765i −0.268952 + 0.963154i \(0.586677\pi\)
−0.699640 + 0.714496i \(0.746656\pi\)
\(284\) 2.36603 4.09808i 0.140398 0.243176i
\(285\) 16.9282 1.00274
\(286\) 0 0
\(287\) 6.92820 0.408959
\(288\) 11.5981 20.0885i 0.683423 1.18372i
\(289\) 2.50000 4.33013i 0.147059 0.254713i
\(290\) 2.19615 + 3.80385i 0.128963 + 0.223370i
\(291\) −5.46410 −0.320311
\(292\) −2.00000 3.46410i −0.117041 0.202721i
\(293\) −2.53590 4.39230i −0.148149 0.256601i 0.782395 0.622783i \(-0.213998\pi\)
−0.930543 + 0.366182i \(0.880665\pi\)
\(294\) −14.1962 −0.827936
\(295\) 4.56218 + 7.90192i 0.265620 + 0.460068i
\(296\) 3.46410 6.00000i 0.201347 0.348743i
\(297\) −9.46410 + 16.3923i −0.549163 + 0.951178i
\(298\) 13.6077 0.788273
\(299\) 0 0
\(300\) 2.73205 0.157735
\(301\) −0.196152 + 0.339746i −0.0113060 + 0.0195826i
\(302\) −1.56218 + 2.70577i −0.0898932 + 0.155700i
\(303\) 1.26795 + 2.19615i 0.0728418 + 0.126166i
\(304\) −30.9808 −1.77687
\(305\) 4.19615 + 7.26795i 0.240271 + 0.416162i
\(306\) 13.3923 + 23.1962i 0.765587 + 1.32604i
\(307\) 18.7846 1.07209 0.536047 0.844188i \(-0.319917\pi\)
0.536047 + 0.844188i \(0.319917\pi\)
\(308\) 4.73205 + 8.19615i 0.269634 + 0.467019i
\(309\) 0.267949 0.464102i 0.0152431 0.0264018i
\(310\) 8.83013 15.2942i 0.501518 0.868654i
\(311\) −16.3923 −0.929522 −0.464761 0.885436i \(-0.653860\pi\)
−0.464761 + 0.885436i \(0.653860\pi\)
\(312\) 0 0
\(313\) −14.3923 −0.813501 −0.406751 0.913539i \(-0.633338\pi\)
−0.406751 + 0.913539i \(0.633338\pi\)
\(314\) 8.66025 15.0000i 0.488726 0.846499i
\(315\) 4.46410 7.73205i 0.251524 0.435652i
\(316\) 4.19615 + 7.26795i 0.236052 + 0.408854i
\(317\) −24.0000 −1.34797 −0.673987 0.738743i \(-0.735420\pi\)
−0.673987 + 0.738743i \(0.735420\pi\)
\(318\) −24.5885 42.5885i −1.37885 2.38824i
\(319\) 6.00000 + 10.3923i 0.335936 + 0.581857i
\(320\) 1.00000 0.0559017
\(321\) −24.1244 41.7846i −1.34649 2.33219i
\(322\) 2.19615 3.80385i 0.122387 0.211980i
\(323\) 10.7321 18.5885i 0.597147 1.03429i
\(324\) −2.46410 −0.136895
\(325\) 0 0
\(326\) 24.9282 1.38065
\(327\) 2.73205 4.73205i 0.151083 0.261683i
\(328\) −3.00000 + 5.19615i −0.165647 + 0.286910i
\(329\) −6.00000 10.3923i −0.330791 0.572946i
\(330\) 22.3923 1.23266
\(331\) 1.29423 + 2.24167i 0.0711372 + 0.123213i 0.899400 0.437127i \(-0.144004\pi\)
−0.828263 + 0.560340i \(0.810671\pi\)
\(332\) −3.00000 5.19615i −0.164646 0.285176i
\(333\) 17.8564 0.978525
\(334\) −0.803848 1.39230i −0.0439846 0.0761835i
\(335\) 3.19615 5.53590i 0.174624 0.302458i
\(336\) −13.6603 + 23.6603i −0.745228 + 1.29077i
\(337\) −26.3923 −1.43768 −0.718840 0.695175i \(-0.755327\pi\)
−0.718840 + 0.695175i \(0.755327\pi\)
\(338\) 0 0
\(339\) 23.3205 1.26660
\(340\) 1.73205 3.00000i 0.0939336 0.162698i
\(341\) 24.1244 41.7846i 1.30641 2.26276i
\(342\) −23.9545 41.4904i −1.29531 2.24354i
\(343\) 20.0000 1.07990
\(344\) −0.169873 0.294229i −0.00915894 0.0158637i
\(345\) −1.73205 3.00000i −0.0932505 0.161515i
\(346\) 14.7846 0.794826
\(347\) 2.83013 + 4.90192i 0.151929 + 0.263149i 0.931937 0.362621i \(-0.118118\pi\)
−0.780007 + 0.625770i \(0.784785\pi\)
\(348\) 3.46410 6.00000i 0.185695 0.321634i
\(349\) −7.19615 + 12.4641i −0.385201 + 0.667188i −0.991797 0.127822i \(-0.959201\pi\)
0.606596 + 0.795010i \(0.292535\pi\)
\(350\) −3.46410 −0.185164
\(351\) 0 0
\(352\) −24.5885 −1.31057
\(353\) −13.8564 + 24.0000i −0.737502 + 1.27739i 0.216115 + 0.976368i \(0.430661\pi\)
−0.953617 + 0.301023i \(0.902672\pi\)
\(354\) 21.5885 37.3923i 1.14741 1.98738i
\(355\) 2.36603 + 4.09808i 0.125576 + 0.217503i
\(356\) 12.9282 0.685193
\(357\) −9.46410 16.3923i −0.500893 0.867573i
\(358\) 16.3923 + 28.3923i 0.866360 + 1.50058i
\(359\) 2.19615 0.115908 0.0579542 0.998319i \(-0.481542\pi\)
0.0579542 + 0.998319i \(0.481542\pi\)
\(360\) 3.86603 + 6.69615i 0.203757 + 0.352918i
\(361\) −9.69615 + 16.7942i −0.510324 + 0.883907i
\(362\) −0.339746 + 0.588457i −0.0178567 + 0.0309286i
\(363\) 31.1244 1.63361
\(364\) 0 0
\(365\) 4.00000 0.209370
\(366\) 19.8564 34.3923i 1.03791 1.79771i
\(367\) −5.90192 + 10.2224i −0.308078 + 0.533607i −0.977942 0.208877i \(-0.933019\pi\)
0.669864 + 0.742484i \(0.266352\pi\)
\(368\) 3.16987 + 5.49038i 0.165241 + 0.286206i
\(369\) −15.4641 −0.805029
\(370\) −3.46410 6.00000i −0.180090 0.311925i
\(371\) 10.3923 + 18.0000i 0.539542 + 0.934513i
\(372\) −27.8564 −1.44429
\(373\) 5.00000 + 8.66025i 0.258890 + 0.448411i 0.965945 0.258748i \(-0.0833099\pi\)
−0.707055 + 0.707159i \(0.749977\pi\)
\(374\) 14.1962 24.5885i 0.734066 1.27144i
\(375\) −1.36603 + 2.36603i −0.0705412 + 0.122181i
\(376\) 10.3923 0.535942
\(377\) 0 0
\(378\) −13.8564 −0.712697
\(379\) 9.49038 16.4378i 0.487488 0.844354i −0.512408 0.858742i \(-0.671247\pi\)
0.999896 + 0.0143877i \(0.00457991\pi\)
\(380\) −3.09808 + 5.36603i −0.158928 + 0.275271i
\(381\) −22.1244 38.3205i −1.13347 1.96322i
\(382\) −8.78461 −0.449460
\(383\) 6.46410 + 11.1962i 0.330300 + 0.572097i 0.982571 0.185890i \(-0.0595167\pi\)
−0.652270 + 0.757986i \(0.726183\pi\)
\(384\) −16.5622 28.6865i −0.845185 1.46390i
\(385\) −9.46410 −0.482335
\(386\) −8.66025 15.0000i −0.440795 0.763480i
\(387\) 0.437822 0.758330i 0.0222558 0.0385481i
\(388\) 1.00000 1.73205i 0.0507673 0.0879316i
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) −4.39230 −0.222128
\(392\) −2.59808 + 4.50000i −0.131223 + 0.227284i
\(393\) 0 0
\(394\) −11.1962 19.3923i −0.564054 0.976970i
\(395\) −8.39230 −0.422263
\(396\) −10.5622 18.2942i −0.530769 0.919320i
\(397\) 14.3923 + 24.9282i 0.722329 + 1.25111i 0.960064 + 0.279781i \(0.0902617\pi\)
−0.237735 + 0.971330i \(0.576405\pi\)
\(398\) 34.6410 1.73640
\(399\) 16.9282 + 29.3205i 0.847470 + 1.46786i
\(400\) 2.50000 4.33013i 0.125000 0.216506i
\(401\) −18.4641 + 31.9808i −0.922053 + 1.59704i −0.125820 + 0.992053i \(0.540156\pi\)
−0.796233 + 0.604990i \(0.793177\pi\)
\(402\) −30.2487 −1.50867
\(403\) 0 0
\(404\) −0.928203 −0.0461798
\(405\) 1.23205 2.13397i 0.0612211 0.106038i
\(406\) −4.39230 + 7.60770i −0.217986 + 0.377564i
\(407\) −9.46410 16.3923i −0.469118 0.812536i
\(408\) 16.3923 0.811540
\(409\) −8.80385 15.2487i −0.435322 0.754000i 0.562000 0.827137i \(-0.310032\pi\)
−0.997322 + 0.0731372i \(0.976699\pi\)
\(410\) 3.00000 + 5.19615i 0.148159 + 0.256620i
\(411\) −2.53590 −0.125087
\(412\) 0.0980762 + 0.169873i 0.00483187 + 0.00836904i
\(413\) −9.12436 + 15.8038i −0.448980 + 0.777657i
\(414\) −4.90192 + 8.49038i −0.240916 + 0.417279i
\(415\) 6.00000 0.294528
\(416\) 0 0
\(417\) 33.8564 1.65796
\(418\) −25.3923 + 43.9808i −1.24198 + 2.15117i
\(419\) 1.26795 2.19615i 0.0619434 0.107289i −0.833391 0.552684i \(-0.813604\pi\)
0.895334 + 0.445395i \(0.146937\pi\)
\(420\) 2.73205 + 4.73205i 0.133310 + 0.230900i
\(421\) 30.7846 1.50035 0.750175 0.661239i \(-0.229969\pi\)
0.750175 + 0.661239i \(0.229969\pi\)
\(422\) −6.92820 12.0000i −0.337260 0.584151i
\(423\) 13.3923 + 23.1962i 0.651156 + 1.12784i
\(424\) −18.0000 −0.874157
\(425\) 1.73205 + 3.00000i 0.0840168 + 0.145521i
\(426\) 11.1962 19.3923i 0.542455 0.939560i
\(427\) −8.39230 + 14.5359i −0.406132 + 0.703441i
\(428\) 17.6603 0.853641
\(429\) 0 0
\(430\) −0.339746 −0.0163840
\(431\) −12.7583 + 22.0981i −0.614547 + 1.06443i 0.375917 + 0.926653i \(0.377328\pi\)
−0.990464 + 0.137773i \(0.956005\pi\)
\(432\) 10.0000 17.3205i 0.481125 0.833333i
\(433\) −17.3923 30.1244i −0.835821 1.44768i −0.893360 0.449341i \(-0.851659\pi\)
0.0575395 0.998343i \(-0.481674\pi\)
\(434\) 35.3205 1.69544
\(435\) 3.46410 + 6.00000i 0.166091 + 0.287678i
\(436\) 1.00000 + 1.73205i 0.0478913 + 0.0829502i
\(437\) 7.85641 0.375823
\(438\) −9.46410 16.3923i −0.452212 0.783255i
\(439\) −16.0000 + 27.7128i −0.763638 + 1.32266i 0.177325 + 0.984152i \(0.443256\pi\)
−0.940963 + 0.338508i \(0.890078\pi\)
\(440\) 4.09808 7.09808i 0.195368 0.338388i
\(441\) −13.3923 −0.637729
\(442\) 0 0
\(443\) −16.9808 −0.806780 −0.403390 0.915028i \(-0.632168\pi\)
−0.403390 + 0.915028i \(0.632168\pi\)
\(444\) −5.46410 + 9.46410i −0.259315 + 0.449146i
\(445\) −6.46410 + 11.1962i −0.306428 + 0.530749i
\(446\) 1.73205 + 3.00000i 0.0820150 + 0.142054i
\(447\) 21.4641 1.01522
\(448\) 1.00000 + 1.73205i 0.0472456 + 0.0818317i
\(449\) 10.2679 + 17.7846i 0.484574 + 0.839308i 0.999843 0.0177212i \(-0.00564113\pi\)
−0.515268 + 0.857029i \(0.672308\pi\)
\(450\) 7.73205 0.364492
\(451\) 8.19615 + 14.1962i 0.385942 + 0.668471i
\(452\) −4.26795 + 7.39230i −0.200747 + 0.347705i
\(453\) −2.46410 + 4.26795i −0.115774 + 0.200526i
\(454\) 6.00000 0.281594
\(455\) 0 0
\(456\) −29.3205 −1.37306
\(457\) 5.39230 9.33975i 0.252241 0.436895i −0.711901 0.702280i \(-0.752166\pi\)
0.964143 + 0.265385i \(0.0854990\pi\)
\(458\) 5.53590 9.58846i 0.258676 0.448039i
\(459\) 6.92820 + 12.0000i 0.323381 + 0.560112i
\(460\) 1.26795 0.0591184
\(461\) −1.73205 3.00000i −0.0806696 0.139724i 0.822868 0.568232i \(-0.192373\pi\)
−0.903538 + 0.428508i \(0.859039\pi\)
\(462\) 22.3923 + 38.7846i 1.04178 + 1.80442i
\(463\) 2.39230 0.111180 0.0555899 0.998454i \(-0.482296\pi\)
0.0555899 + 0.998454i \(0.482296\pi\)
\(464\) −6.33975 10.9808i −0.294315 0.509769i
\(465\) 13.9282 24.1244i 0.645905 1.11874i
\(466\) 5.19615 9.00000i 0.240707 0.416917i
\(467\) 27.8038 1.28661 0.643304 0.765611i \(-0.277563\pi\)
0.643304 + 0.765611i \(0.277563\pi\)
\(468\) 0 0
\(469\) 12.7846 0.590338
\(470\) 5.19615 9.00000i 0.239681 0.415139i
\(471\) 13.6603 23.6603i 0.629431 1.09021i
\(472\) −7.90192 13.6865i −0.363716 0.629974i
\(473\) −0.928203 −0.0426788
\(474\) 19.8564 + 34.3923i 0.912035 + 1.57969i
\(475\) −3.09808 5.36603i −0.142149 0.246210i
\(476\) 6.92820 0.317554
\(477\) −23.1962 40.1769i −1.06208 1.83957i
\(478\) −12.2942 + 21.2942i −0.562325 + 0.973975i
\(479\) 17.8301 30.8827i 0.814679 1.41107i −0.0948787 0.995489i \(-0.530246\pi\)
0.909558 0.415577i \(-0.136420\pi\)
\(480\) −14.1962 −0.647963
\(481\) 0 0
\(482\) 4.14359 0.188736
\(483\) 3.46410 6.00000i 0.157622 0.273009i
\(484\) −5.69615 + 9.86603i −0.258916 + 0.448456i
\(485\) 1.00000 + 1.73205i 0.0454077 + 0.0786484i
\(486\) −32.4449 −1.47173
\(487\) −13.1962 22.8564i −0.597975 1.03572i −0.993120 0.117104i \(-0.962639\pi\)
0.395145 0.918619i \(-0.370694\pi\)
\(488\) −7.26795 12.5885i −0.329005 0.569853i
\(489\) 39.3205 1.77813
\(490\) 2.59808 + 4.50000i 0.117369 + 0.203289i
\(491\) 1.26795 2.19615i 0.0572217 0.0991110i −0.835996 0.548736i \(-0.815109\pi\)
0.893217 + 0.449625i \(0.148442\pi\)
\(492\) 4.73205 8.19615i 0.213337 0.369511i
\(493\) 8.78461 0.395639
\(494\) 0 0
\(495\) 21.1244 0.949469
\(496\) −25.4904 + 44.1506i −1.14455 + 1.98242i
\(497\) −4.73205 + 8.19615i −0.212261 + 0.367648i
\(498\) −14.1962 24.5885i −0.636145 1.10184i
\(499\) 38.9808 1.74502 0.872509 0.488598i \(-0.162491\pi\)
0.872509 + 0.488598i \(0.162491\pi\)
\(500\) −0.500000 0.866025i −0.0223607 0.0387298i
\(501\) −1.26795 2.19615i −0.0566478 0.0981169i
\(502\) −37.1769 −1.65929
\(503\) −9.75833 16.9019i −0.435102 0.753620i 0.562202 0.827000i \(-0.309955\pi\)
−0.997304 + 0.0733807i \(0.976621\pi\)
\(504\) −7.73205 + 13.3923i −0.344413 + 0.596541i
\(505\) 0.464102 0.803848i 0.0206523 0.0357707i
\(506\) 10.3923 0.461994
\(507\) 0 0
\(508\) 16.1962 0.718588
\(509\) 19.7321 34.1769i 0.874608 1.51487i 0.0174278 0.999848i \(-0.494452\pi\)
0.857180 0.515017i \(-0.172214\pi\)
\(510\) 8.19615 14.1962i 0.362932 0.628616i
\(511\) 4.00000 + 6.92820i 0.176950 + 0.306486i
\(512\) 8.66025 0.382733
\(513\) −12.3923 21.4641i −0.547134 0.947663i
\(514\) −17.1962 29.7846i −0.758490 1.31374i
\(515\) −0.196152 −0.00864351
\(516\) 0.267949 + 0.464102i 0.0117958 + 0.0204309i
\(517\) 14.1962 24.5885i 0.624346 1.08140i
\(518\) 6.92820 12.0000i 0.304408 0.527250i
\(519\) 23.3205 1.02366
\(520\) 0 0
\(521\) −28.3923 −1.24389 −0.621945 0.783061i \(-0.713657\pi\)
−0.621945 + 0.783061i \(0.713657\pi\)
\(522\) 9.80385 16.9808i 0.429103 0.743228i
\(523\) 12.0981 20.9545i 0.529012 0.916276i −0.470416 0.882445i \(-0.655896\pi\)
0.999428 0.0338306i \(-0.0107707\pi\)
\(524\) 0 0
\(525\) −5.46410 −0.238473
\(526\) −1.09808 1.90192i −0.0478784 0.0829278i
\(527\) −17.6603 30.5885i −0.769293 1.33245i
\(528\) −64.6410 −2.81314
\(529\) 10.6962 + 18.5263i 0.465050 + 0.805490i
\(530\) −9.00000 + 15.5885i −0.390935 + 0.677119i
\(531\) 20.3660 35.2750i 0.883810 1.53080i
\(532\) −12.3923 −0.537275
\(533\) 0 0
\(534\) 61.1769 2.64738
\(535\) −8.83013 + 15.2942i −0.381760 + 0.661227i
\(536\) −5.53590 + 9.58846i −0.239114 + 0.414158i
\(537\) 25.8564 + 44.7846i 1.11579 + 1.93260i
\(538\) −34.3923 −1.48276
\(539\) 7.09808 + 12.2942i 0.305736 + 0.529550i
\(540\) −2.00000 3.46410i −0.0860663 0.149071i
\(541\) 26.3923 1.13469 0.567347 0.823479i \(-0.307970\pi\)
0.567347 + 0.823479i \(0.307970\pi\)
\(542\) 26.8301 + 46.4711i 1.15245 + 1.99611i
\(543\) −0.535898 + 0.928203i −0.0229976 + 0.0398330i
\(544\) −9.00000 + 15.5885i −0.385872 + 0.668350i
\(545\) −2.00000 −0.0856706
\(546\) 0 0
\(547\) −12.1962 −0.521470 −0.260735 0.965410i \(-0.583965\pi\)
−0.260735 + 0.965410i \(0.583965\pi\)
\(548\) 0.464102 0.803848i 0.0198254 0.0343387i
\(549\) 18.7321 32.4449i 0.799464 1.38471i
\(550\) −4.09808 7.09808i −0.174743 0.302663i
\(551\) −15.7128 −0.669388
\(552\) 3.00000 + 5.19615i 0.127688 + 0.221163i
\(553\) −8.39230 14.5359i −0.356877 0.618129i
\(554\) −45.7128 −1.94215
\(555\) −5.46410 9.46410i −0.231938 0.401729i
\(556\) −6.19615 + 10.7321i −0.262775 + 0.455140i
\(557\) 0.928203 1.60770i 0.0393292 0.0681202i −0.845691 0.533673i \(-0.820811\pi\)
0.885020 + 0.465553i \(0.154145\pi\)
\(558\) −78.8372 −3.33744
\(559\) 0 0
\(560\) 10.0000 0.422577
\(561\) 22.3923 38.7846i 0.945404 1.63749i
\(562\) 19.3923 33.5885i 0.818015 1.41684i
\(563\) 11.0263 + 19.0981i 0.464702 + 0.804888i 0.999188 0.0402895i \(-0.0128280\pi\)
−0.534486 + 0.845177i \(0.679495\pi\)
\(564\) −16.3923 −0.690241
\(565\) −4.26795 7.39230i −0.179554 0.310997i
\(566\) −28.2224 48.8827i −1.18628 2.05469i
\(567\) 4.92820 0.206965
\(568\) −4.09808 7.09808i −0.171951 0.297829i
\(569\) 1.26795 2.19615i 0.0531552 0.0920675i −0.838223 0.545327i \(-0.816406\pi\)
0.891379 + 0.453259i \(0.149739\pi\)
\(570\) −14.6603 + 25.3923i −0.614050 + 1.06357i
\(571\) 36.3923 1.52297 0.761485 0.648182i \(-0.224470\pi\)
0.761485 + 0.648182i \(0.224470\pi\)
\(572\) 0 0
\(573\) −13.8564 −0.578860
\(574\) −6.00000 + 10.3923i −0.250435 + 0.433766i
\(575\) −0.633975 + 1.09808i −0.0264386 + 0.0457929i
\(576\) −2.23205 3.86603i −0.0930021 0.161084i
\(577\) 4.00000 0.166522 0.0832611 0.996528i \(-0.473466\pi\)
0.0832611 + 0.996528i \(0.473466\pi\)
\(578\) 4.33013 + 7.50000i 0.180110 + 0.311959i
\(579\) −13.6603 23.6603i −0.567701 0.983287i
\(580\) −2.53590 −0.105297
\(581\) 6.00000 + 10.3923i 0.248922 + 0.431145i
\(582\) 4.73205 8.19615i 0.196150 0.339741i
\(583\) −24.5885 + 42.5885i −1.01835 + 1.76383i
\(584\) −6.92820 −0.286691
\(585\) 0 0
\(586\) 8.78461 0.362889
\(587\) −4.26795 + 7.39230i −0.176157 + 0.305113i −0.940561 0.339624i \(-0.889700\pi\)
0.764404 + 0.644738i \(0.223033\pi\)
\(588\) 4.09808 7.09808i 0.169002 0.292720i
\(589\) 31.5885 + 54.7128i 1.30158 + 2.25440i
\(590\) −15.8038 −0.650634
\(591\) −17.6603 30.5885i −0.726446 1.25824i
\(592\) 10.0000 + 17.3205i 0.410997 + 0.711868i
\(593\) −26.7846 −1.09991 −0.549956 0.835194i \(-0.685356\pi\)
−0.549956 + 0.835194i \(0.685356\pi\)
\(594\) −16.3923 28.3923i −0.672584 1.16495i
\(595\) −3.46410 + 6.00000i −0.142014 + 0.245976i
\(596\) −3.92820 + 6.80385i −0.160905 + 0.278696i
\(597\) 54.6410 2.23631
\(598\) 0 0
\(599\) −7.60770 −0.310842 −0.155421 0.987848i \(-0.549673\pi\)
−0.155421 + 0.987848i \(0.549673\pi\)
\(600\) 2.36603 4.09808i 0.0965926 0.167303i
\(601\) −21.7846 + 37.7321i −0.888613 + 1.53912i −0.0470967 + 0.998890i \(0.514997\pi\)
−0.841516 + 0.540232i \(0.818336\pi\)
\(602\) −0.339746 0.588457i −0.0138470 0.0239837i
\(603\) −28.5359 −1.16207
\(604\) −0.901924 1.56218i −0.0366988 0.0635641i
\(605\) −5.69615 9.86603i −0.231582 0.401111i
\(606\) −4.39230 −0.178425
\(607\) −12.4904 21.6340i −0.506969 0.878096i −0.999967 0.00806581i \(-0.997433\pi\)
0.492999 0.870030i \(-0.335901\pi\)
\(608\) 16.0981 27.8827i 0.652863 1.13079i
\(609\) −6.92820 + 12.0000i −0.280745 + 0.486265i
\(610\) −14.5359 −0.588541
\(611\) 0 0
\(612\) −15.4641 −0.625099
\(613\) 13.0000 22.5167i 0.525065 0.909439i −0.474509 0.880251i \(-0.657374\pi\)
0.999574 0.0291886i \(-0.00929235\pi\)
\(614\) −16.2679 + 28.1769i −0.656521 + 1.13713i
\(615\) 4.73205 + 8.19615i 0.190815 + 0.330501i
\(616\) 16.3923 0.660465
\(617\) 16.8564 + 29.1962i 0.678613 + 1.17539i 0.975399 + 0.220449i \(0.0707521\pi\)
−0.296785 + 0.954944i \(0.595915\pi\)
\(618\) 0.464102 + 0.803848i 0.0186689 + 0.0323355i
\(619\) −6.98076 −0.280581 −0.140290 0.990110i \(-0.544804\pi\)
−0.140290 + 0.990110i \(0.544804\pi\)
\(620\) 5.09808 + 8.83013i 0.204744 + 0.354626i
\(621\) −2.53590 + 4.39230i −0.101762 + 0.176257i
\(622\) 14.1962 24.5885i 0.569214 0.985907i
\(623\) −25.8564 −1.03592
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 12.4641 21.5885i 0.498166 0.862848i
\(627\) −40.0526 + 69.3731i −1.59955 + 2.77049i
\(628\) 5.00000 + 8.66025i 0.199522 + 0.345582i
\(629\) −13.8564 −0.552491
\(630\) 7.73205 + 13.3923i 0.308052 + 0.533562i
\(631\) 2.90192 + 5.02628i 0.115524 + 0.200093i 0.917989 0.396606i \(-0.129812\pi\)
−0.802465 + 0.596699i \(0.796479\pi\)
\(632\) 14.5359 0.578207
\(633\) −10.9282 18.9282i −0.434357 0.752329i
\(634\) 20.7846 36.0000i 0.825462 1.42974i
\(635\) −8.09808 + 14.0263i −0.321362 + 0.556616i
\(636\) 28.3923 1.12583
\(637\) 0 0
\(638\) −20.7846 −0.822871
\(639\) 10.5622 18.2942i 0.417833 0.723708i
\(640\) −6.06218 + 10.5000i −0.239629 + 0.415049i
\(641\) −6.46410 11.1962i −0.255317 0.442221i 0.709665 0.704539i \(-0.248846\pi\)
−0.964981 + 0.262318i \(0.915513\pi\)
\(642\) 83.5692 3.29821
\(643\) −3.39230 5.87564i −0.133779 0.231713i 0.791351 0.611362i \(-0.209378\pi\)
−0.925131 + 0.379649i \(0.876045\pi\)
\(644\) 1.26795 + 2.19615i 0.0499642 + 0.0865405i
\(645\) −0.535898 −0.0211010
\(646\) 18.5885 + 32.1962i 0.731353 + 1.26674i
\(647\) −11.0263 + 19.0981i −0.433488 + 0.750823i −0.997171 0.0751683i \(-0.976051\pi\)
0.563683 + 0.825991i \(0.309384\pi\)
\(648\) −2.13397 + 3.69615i −0.0838304 + 0.145199i
\(649\) −43.1769 −1.69484
\(650\) 0 0
\(651\) 55.7128 2.18356
\(652\) −7.19615 + 12.4641i −0.281823 + 0.488132i
\(653\) −3.92820 + 6.80385i −0.153722 + 0.266255i −0.932593 0.360929i \(-0.882460\pi\)
0.778871 + 0.627185i \(0.215793\pi\)
\(654\) 4.73205 + 8.19615i 0.185038 + 0.320495i
\(655\) 0 0
\(656\) −8.66025 15.0000i −0.338126 0.585652i
\(657\) −8.92820 15.4641i −0.348322 0.603312i
\(658\) 20.7846 0.810268
\(659\) 10.7321 + 18.5885i 0.418061 + 0.724103i 0.995744 0.0921577i \(-0.0293764\pi\)
−0.577683 + 0.816261i \(0.696043\pi\)
\(660\) −6.46410 + 11.1962i −0.251615 + 0.435810i
\(661\) 5.39230 9.33975i 0.209736 0.363274i −0.741895 0.670516i \(-0.766073\pi\)
0.951631 + 0.307242i \(0.0994061\pi\)
\(662\) −4.48334 −0.174250
\(663\) 0 0
\(664\) −10.3923 −0.403300
\(665\) 6.19615 10.7321i 0.240276 0.416171i
\(666\) −15.4641 + 26.7846i −0.599222 + 1.03788i
\(667\) 1.60770 + 2.78461i 0.0622502 + 0.107821i
\(668\) 0.928203 0.0359133
\(669\) 2.73205 + 4.73205i 0.105627 + 0.182952i
\(670\) 5.53590 + 9.58846i 0.213870 + 0.370434i
\(671\) −39.7128 −1.53310
\(672\) −14.1962 24.5885i −0.547628 0.948520i
\(673\) 7.19615 12.4641i 0.277391 0.480456i −0.693344 0.720606i \(-0.743863\pi\)
0.970736 + 0.240151i \(0.0771968\pi\)
\(674\) 22.8564 39.5885i 0.880396 1.52489i
\(675\) 4.00000 0.153960
\(676\) 0 0
\(677\) 10.3923 0.399409 0.199704 0.979856i \(-0.436002\pi\)
0.199704 + 0.979856i \(0.436002\pi\)
\(678\) −20.1962 + 34.9808i −0.775629 + 1.34343i
\(679\) −2.00000 + 3.46410i −0.0767530 + 0.132940i
\(680\) −3.00000 5.19615i −0.115045 0.199263i
\(681\) 9.46410 0.362665
\(682\) 41.7846 + 72.3731i 1.60002 + 2.77131i
\(683\) 16.2679 + 28.1769i 0.622476 + 1.07816i 0.989023 + 0.147760i \(0.0472064\pi\)
−0.366547 + 0.930399i \(0.619460\pi\)
\(684\) 27.6603 1.05762
\(685\) 0.464102 + 0.803848i 0.0177324 + 0.0307134i
\(686\) −17.3205 + 30.0000i −0.661300 + 1.14541i
\(687\) 8.73205 15.1244i 0.333149 0.577030i
\(688\) 0.980762 0.0373912
\(689\) 0 0
\(690\) 6.00000 0.228416
\(691\) −23.8827 + 41.3660i −0.908540 + 1.57364i −0.0924469 + 0.995718i \(0.529469\pi\)
−0.816093 + 0.577920i \(0.803865\pi\)
\(692\) −4.26795 + 7.39230i −0.162243 + 0.281013i
\(693\) 21.1244 + 36.5885i 0.802448 + 1.38988i
\(694\) −9.80385 −0.372149
\(695\) −6.19615 10.7321i −0.235033 0.407090i
\(696\) −6.00000 10.3923i −0.227429 0.393919i
\(697\) 12.0000 0.454532
\(698\) −12.4641 21.5885i −0.471773 0.817135i
\(699\) 8.19615 14.1962i 0.310007 0.536948i
\(700\) 1.00000 1.73205i 0.0377964 0.0654654i
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) 24.7846 0.934769
\(704\) −2.36603 + 4.09808i −0.0891729 + 0.154452i
\(705\) 8.19615 14.1962i 0.308685 0.534658i
\(706\) −24.0000 41.5692i −0.903252 1.56448i
\(707\) 1.85641 0.0698174
\(708\) 12.4641 + 21.5885i 0.468430 + 0.811344i
\(709\) 15.1962 + 26.3205i 0.570703 + 0.988487i 0.996494 + 0.0836656i \(0.0266628\pi\)
−0.425790 + 0.904822i \(0.640004\pi\)
\(710\) −8.19615 −0.307596
\(711\) 18.7321 + 32.4449i 0.702507 + 1.21678i
\(712\) 11.1962 19.3923i 0.419594 0.726757i
\(713\) 6.46410 11.1962i 0.242083 0.419299i
\(714\) 32.7846 1.22693
\(715\) 0 0
\(716\) −18.9282 −0.707380
\(717\) −19.3923 + 33.5885i −0.724219 + 1.25438i
\(718\) −1.90192 + 3.29423i −0.0709792 + 0.122940i
\(719\) 12.9282 + 22.3923i 0.482141 + 0.835092i 0.999790 0.0205009i \(-0.00652609\pi\)
−0.517649 + 0.855593i \(0.673193\pi\)
\(720\) −22.3205 −0.831836
\(721\) −0.196152 0.339746i −0.00730510 0.0126528i
\(722\) −16.7942 29.0885i −0.625016 1.08256i
\(723\) 6.53590 0.243073
\(724\) −0.196152 0.339746i −0.00728995 0.0126266i
\(725\) 1.26795 2.19615i 0.0470905 0.0815631i
\(726\) −26.9545 + 46.6865i −1.00037 + 1.73270i
\(727\) 44.5885 1.65369 0.826847 0.562427i \(-0.190132\pi\)
0.826847 + 0.562427i \(0.190132\pi\)
\(728\) 0 0
\(729\) −43.7846 −1.62165
\(730\) −3.46410 + 6.00000i −0.128212 + 0.222070i
\(731\) −0.339746 + 0.588457i −0.0125660 + 0.0217649i
\(732\) 11.4641 + 19.8564i 0.423725 + 0.733914i
\(733\) −38.0000 −1.40356 −0.701781 0.712393i \(-0.747612\pi\)
−0.701781 + 0.712393i \(0.747612\pi\)
\(734\) −10.2224 17.7058i −0.377317 0.653532i
\(735\) 4.09808 + 7.09808i 0.151160 + 0.261816i
\(736\) −6.58846 −0.242854
\(737\) 15.1244 + 26.1962i 0.557113 + 0.964948i
\(738\) 13.3923 23.1962i 0.492978 0.853862i
\(739\) −9.09808 + 15.7583i −0.334678 + 0.579680i −0.983423 0.181326i \(-0.941961\pi\)
0.648745 + 0.761006i \(0.275294\pi\)
\(740\) 4.00000 0.147043
\(741\) 0 0
\(742\) −36.0000 −1.32160
\(743\) −8.07180 + 13.9808i −0.296126 + 0.512904i −0.975246 0.221122i \(-0.929028\pi\)
0.679121 + 0.734027i \(0.262361\pi\)
\(744\) −24.1244 + 41.7846i −0.884442 + 1.53190i
\(745\) −3.92820 6.80385i −0.143918 0.249274i
\(746\) −17.3205 −0.634149
\(747\) −13.3923 23.1962i −0.489999 0.848703i
\(748\) 8.19615 + 14.1962i 0.299681 + 0.519063i
\(749\) −35.3205 −1.29058
\(750\) −2.36603 4.09808i −0.0863950 0.149641i
\(751\) −18.1962 + 31.5167i −0.663987 + 1.15006i 0.315572 + 0.948902i \(0.397804\pi\)
−0.979559 + 0.201158i \(0.935530\pi\)
\(752\) −15.0000 + 25.9808i −0.546994 + 0.947421i
\(753\) −58.6410 −2.13700
\(754\) 0 0
\(755\) 1.80385 0.0656487
\(756\) 4.00000 6.92820i 0.145479 0.251976i
\(757\) 1.19615 2.07180i 0.0434749 0.0753007i −0.843469 0.537178i \(-0.819490\pi\)
0.886944 + 0.461877i \(0.152824\pi\)
\(758\) 16.4378 + 28.4711i 0.597049 + 1.03412i
\(759\) 16.3923 0.595003
\(760\) 5.36603 + 9.29423i 0.194646 + 0.337137i
\(761\) −9.92820 17.1962i −0.359897 0.623360i 0.628046 0.778176i \(-0.283855\pi\)
−0.987943 + 0.154816i \(0.950522\pi\)
\(762\) 76.6410 2.77641
\(763\) −2.00000 3.46410i −0.0724049 0.125409i
\(764\) 2.53590 4.39230i 0.0917456 0.158908i
\(765\) 7.73205 13.3923i 0.279553 0.484200i
\(766\) −22.3923 −0.809067
\(767\) 0 0
\(768\) 51.9090 1.87310
\(769\) 17.3923 30.1244i 0.627183 1.08631i −0.360932 0.932592i \(-0.617541\pi\)
0.988114 0.153720i \(-0.0491253\pi\)
\(770\) 8.19615 14.1962i 0.295369 0.511594i
\(771\) −27.1244 46.9808i −0.976860 1.69197i
\(772\) 10.0000 0.359908
\(773\) 3.46410 + 6.00000i 0.124595 + 0.215805i 0.921575 0.388201i \(-0.126903\pi\)
−0.796980 + 0.604006i \(0.793570\pi\)
\(774\) 0.758330 + 1.31347i 0.0272576 + 0.0472116i
\(775\) −10.1962 −0.366257
\(776\) −1.73205 3.00000i −0.0621770 0.107694i
\(777\) 10.9282 18.9282i 0.392047 0.679046i
\(778\) −5.19615 + 9.00000i −0.186291 + 0.322666i
\(779\) −21.4641 −0.769031
\(780\) 0 0
\(781\) −22.3923 −0.801260
\(782\) 3.80385 6.58846i 0.136025 0.235603i
\(783\) 5.07180 8.78461i 0.181251 0.313936i
\(784\) −7.50000 12.9904i −0.267857 0.463942i
\(785\) −10.0000 −0.356915
\(786\) 0 0
\(787\) 15.7846 + 27.3397i 0.562661 + 0.974557i 0.997263 + 0.0739343i \(0.0235555\pi\)
−0.434603 + 0.900622i \(0.643111\pi\)
\(788\) 12.9282 0.460548
\(789\) −1.73205 3.00000i −0.0616626 0.106803i
\(790\) 7.26795 12.5885i 0.258582 0.447877i
\(791\) 8.53590 14.7846i 0.303502 0.525680i
\(792\) −36.5885 −1.30011
\(793\) 0 0
\(794\) −49.8564 −1.76934
\(795\) −14.1962 + 24.5885i −0.503486 + 0.872063i
\(796\) −10.0000 + 17.3205i −0.354441 + 0.613909i
\(797\) 20.3205 + 35.1962i 0.719789 + 1.24671i 0.961083 + 0.276260i \(0.0890949\pi\)
−0.241294 + 0.970452i \(0.577572\pi\)
\(798\) −58.6410 −2.07587
\(799\) −10.3923 18.0000i −0.367653 0.636794i
\(800\) 2.59808 + 4.50000i 0.0918559 + 0.159099i
\(801\) 57.7128 2.03918
\(802\) −31.9808 55.3923i −1.12928 1.95597i
\(803\) −9.46410 + 16.3923i −0.333981 + 0.578472i
\(804\) 8.73205 15.1244i 0.307956 0.533395i
\(805\) −2.53590 −0.0893787
\(806\) 0 0
\(807\) −54.2487 −1.90965
\(808\) −0.803848 + 1.39230i −0.0282793 + 0.0489811i
\(809\) 1.26795 2.19615i 0.0445787 0.0772126i −0.842875 0.538109i \(-0.819139\pi\)
0.887454 + 0.460897i \(0.152472\pi\)
\(810\) 2.13397 + 3.69615i 0.0749802 + 0.129870i
\(811\) −17.8038 −0.625178 −0.312589 0.949889i \(-0.601196\pi\)
−0.312589 + 0.949889i \(0.601196\pi\)
\(812\) −2.53590 4.39230i −0.0889926 0.154140i
\(813\) 42.3205 + 73.3013i 1.48425 + 2.57079i
\(814\) 32.7846 1.14910
\(815\) −7.19615 12.4641i −0.252070 0.436598i
\(816\) −23.6603 + 40.9808i −0.828275 + 1.43461i
\(817\) 0.607695 1.05256i 0.0212606 0.0368244i
\(818\) 30.4974 1.06632
\(819\) 0 0
\(820\) −3.46410 −0.120972
\(821\) 14.3205 24.8038i 0.499789 0.865660i −0.500211 0.865904i \(-0.666744\pi\)
1.00000 0.000243419i \(7.74828e-5\pi\)
\(822\) 2.19615 3.80385i 0.0765996 0.132674i
\(823\) 7.70577 + 13.3468i 0.268606 + 0.465240i 0.968502 0.249005i \(-0.0801036\pi\)
−0.699896 + 0.714245i \(0.746770\pi\)
\(824\) 0.339746 0.0118356
\(825\) −6.46410 11.1962i −0.225051 0.389800i
\(826\) −15.8038 27.3731i −0.549886 0.952431i
\(827\) −18.0000 −0.625921 −0.312961 0.949766i \(-0.601321\pi\)
−0.312961 + 0.949766i \(0.601321\pi\)
\(828\) −2.83013 4.90192i −0.0983537 0.170354i
\(829\) −0.196152 + 0.339746i −0.00681266 + 0.0117999i −0.869412 0.494088i \(-0.835502\pi\)
0.862599 + 0.505888i \(0.168835\pi\)
\(830\) −5.19615 + 9.00000i −0.180361 + 0.312395i
\(831\) −72.1051 −2.50130
\(832\) 0 0
\(833\) 10.3923 0.360072
\(834\) −29.3205 + 50.7846i −1.01529 + 1.75853i
\(835\) −0.464102 + 0.803848i −0.0160609 + 0.0278183i
\(836\) −14.6603 25.3923i −0.507035 0.878211i
\(837\) −40.7846 −1.40972
\(838\) 2.19615 + 3.80385i 0.0758648 + 0.131402i
\(839\) 0.169873 + 0.294229i 0.00586467 + 0.0101579i 0.868943 0.494912i \(-0.164800\pi\)
−0.863078 + 0.505070i \(0.831467\pi\)
\(840\) 9.46410 0.326543
\(841\) 11.2846 + 19.5455i 0.389124 + 0.673983i
\(842\) −26.6603 + 46.1769i −0.918773 + 1.59136i
\(843\) 30.5885 52.9808i 1.05352 1.82475i
\(844\) 8.00000 0.275371
\(845\) 0 0
\(846\) −46.3923 −1.59500
\(847\) 11.3923 19.7321i 0.391444 0.678001i
\(848\) 25.9808 45.0000i 0.892183 1.54531i
\(849\) −44.5167 77.1051i −1.52781 2.64624i
\(850\) −6.00000 −0.205798
\(851\) −2.53590 4.39230i −0.0869295 0.150566i
\(852\) 6.46410 + 11.1962i 0.221456 + 0.383574i
\(853\) −8.00000 −0.273915 −0.136957 0.990577i \(-0.543732\pi\)
−0.136957 + 0.990577i \(0.543732\pi\)
\(854\) −14.5359 25.1769i −0.497408 0.861536i
\(855\) −13.8301 + 23.9545i −0.472980 + 0.819226i
\(856\) 15.2942 26.4904i 0.522746 0.905423i
\(857\) −35.5692 −1.21502 −0.607511 0.794311i \(-0.707832\pi\)
−0.607511 + 0.794311i \(0.707832\pi\)
\(858\) 0 0
\(859\) −17.1769 −0.586069 −0.293034 0.956102i \(-0.594665\pi\)
−0.293034 + 0.956102i \(0.594665\pi\)
\(860\) 0.0980762 0.169873i 0.00334437 0.00579262i
\(861\) −9.46410 + 16.3923i −0.322536 + 0.558648i
\(862\) −22.0981 38.2750i −0.752663 1.30365i
\(863\) 38.7846 1.32024 0.660122 0.751159i \(-0.270505\pi\)
0.660122 + 0.751159i \(0.270505\pi\)
\(864\) 10.3923 + 18.0000i 0.353553 + 0.612372i
\(865\) −4.26795 7.39230i −0.145115 0.251346i
\(866\) 60.2487 2.04733
\(867\) 6.83013 + 11.8301i 0.231963 + 0.401772i
\(868\) −10.1962 + 17.6603i −0.346080 + 0.599428i
\(869\) 19.8564 34.3923i 0.673582 1.16668i
\(870\) −12.0000 −0.406838
\(871\) 0 0
\(872\) 3.46410 0.117309
\(873\) 4.46410 7.73205i 0.151087 0.261690i
\(874\) −6.80385 + 11.7846i −0.230144 + 0.398620i
\(875\) 1.00000 + 1.73205i 0.0338062 + 0.0585540i
\(876\) 10.9282 0.369230
\(877\) 1.00000 + 1.73205i 0.0337676 + 0.0584872i 0.882415 0.470471i \(-0.155916\pi\)
−0.848648 + 0.528958i \(0.822583\pi\)
\(878\) −27.7128 48.0000i −0.935262 1.61992i
\(879\) 13.8564 0.467365
\(880\) 11.8301 + 20.4904i 0.398794 + 0.690731i
\(881\) 23.6603 40.9808i 0.797134 1.38068i −0.124341 0.992240i \(-0.539682\pi\)
0.921475 0.388437i \(-0.126985\pi\)
\(882\) 11.5981 20.0885i 0.390528 0.676414i
\(883\) 23.8038 0.801063 0.400532 0.916283i \(-0.368825\pi\)
0.400532 + 0.916283i \(0.368825\pi\)
\(884\) 0 0
\(885\) −24.9282 −0.837952
\(886\) 14.7058 25.4711i 0.494050 0.855720i
\(887\) 23.9545 41.4904i 0.804313 1.39311i −0.112441 0.993658i \(-0.535867\pi\)
0.916754 0.399452i \(-0.130800\pi\)
\(888\) 9.46410 + 16.3923i 0.317594 + 0.550090i
\(889\) −32.3923 −1.08640
\(890\) −11.1962 19.3923i −0.375296 0.650032i
\(891\) 5.83013 + 10.0981i 0.195317 + 0.338298i
\(892\) −2.00000 −0.0669650
\(893\) 18.5885 + 32.1962i 0.622039 + 1.07740i
\(894\) −18.5885 + 32.1962i −0.621691 + 1.07680i
\(895\) 9.46410 16.3923i 0.316350 0.547934i
\(896\) −24.2487 −0.810093
\(897\) 0 0
\(898\) −35.5692 −1.18696
\(899\) −12.9282 + 22.3923i −0.431180 + 0.746825i
\(900\) −2.23205 + 3.86603i −0.0744017 + 0.128868i
\(901\) 18.0000 + 31.1769i 0.599667 + 1.03865i
\(902\) −28.3923 −0.945360
\(903\) −0.535898 0.928203i −0.0178336 0.0308887i
\(904\) 7.39230 + 12.8038i 0.245864 + 0.425850i
\(905\) 0.392305 0.0130407
\(906\) −4.26795 7.39230i −0.141793 0.245593i
\(907\) 26.8827 46.5622i 0.892625 1.54607i 0.0559081 0.998436i \(-0.482195\pi\)
0.836717 0.547636i \(-0.184472\pi\)
\(908\) −1.73205 + 3.00000i −0.0574801 + 0.0995585i
\(909\) −4.14359 −0.137434
\(910\) 0 0
\(911\) −36.0000 −1.19273 −0.596367 0.802712i \(-0.703390\pi\)
−0.596367 + 0.802712i \(0.703390\pi\)
\(912\) 42.3205 73.3013i 1.40137 2.42725i
\(913\) −14.1962 + 24.5885i −0.469824 + 0.813759i
\(914\) 9.33975 + 16.1769i 0.308931 + 0.535085i
\(915\) −22.9282 −0.757983
\(916\) 3.19615 + 5.53590i 0.105604 + 0.182911i
\(917\) 0 0
\(918\) −24.0000 −0.792118
\(919\) −4.58846 7.94744i −0.151359 0.262162i 0.780368 0.625320i \(-0.215032\pi\)
−0.931727 + 0.363158i \(0.881698\pi\)
\(920\) 1.09808 1.90192i 0.0362025 0.0627046i
\(921\) −25.6603 + 44.4449i −0.845534 + 1.46451i
\(922\) 6.00000 0.197599
\(923\) 0 0
\(924\) −25.8564 −0.850613
\(925\) −2.00000 + 3.46410i −0.0657596 + 0.113899i
\(926\) −2.07180 + 3.58846i −0.0680835 + 0.117924i
\(927\) 0.437822 + 0.758330i 0.0143800 + 0.0249068i
\(928\) 13.1769 0.432553
\(929\) 22.2679 + 38.5692i 0.730588 + 1.26542i 0.956632 + 0.291298i \(0.0940871\pi\)
−0.226045 + 0.974117i \(0.572580\pi\)
\(930\) 24.1244 + 41.7846i 0.791069 + 1.37017i
\(931\) −18.5885 −0.609212
\(932\) 3.00000 + 5.19615i 0.0982683 + 0.170206i
\(933\) 22.3923 38.7846i 0.733091 1.26975i
\(934\) −24.0788 + 41.7058i −0.787884 + 1.36465i
\(935\) −16.3923 −0.536086
\(936\) 0 0
\(937\) 34.7846 1.13636 0.568182 0.822903i \(-0.307647\pi\)
0.568182 + 0.822903i \(0.307647\pi\)
\(938\) −11.0718 + 19.1769i −0.361507 + 0.626148i
\(939\) 19.6603 34.0526i 0.641588 1.11126i
\(940\) 3.00000 + 5.19615i 0.0978492 + 0.169480i
\(941\) −31.1769 −1.01634 −0.508169 0.861257i \(-0.669678\pi\)
−0.508169 + 0.861257i \(0.669678\pi\)
\(942\) 23.6603 + 40.9808i 0.770893 + 1.33523i
\(943\) 2.19615 + 3.80385i 0.0715166 + 0.123870i
\(944\) 45.6218 1.48486
\(945\) 4.00000 + 6.92820i 0.130120 + 0.225374i
\(946\) 0.803848 1.39230i 0.0261353 0.0452677i
\(947\) 20.3205 35.1962i 0.660328 1.14372i −0.320202 0.947349i \(-0.603751\pi\)
0.980529 0.196372i \(-0.0629160\pi\)
\(948\) −22.9282 −0.744673
\(949\) 0 0
\(950\) 10.7321 0.348194
\(951\) 32.7846 56.7846i 1.06311 1.84137i
\(952\) 6.00000 10.3923i 0.194461 0.336817i
\(953\) −0.464102 0.803848i −0.0150337 0.0260392i 0.858411 0.512963i \(-0.171452\pi\)
−0.873444 + 0.486924i \(0.838119\pi\)
\(954\) 80.3538 2.60155
\(955\) 2.53590 + 4.39230i 0.0820597 + 0.142132i
\(956\) −7.09808 12.2942i −0.229568 0.397624i
\(957\) −32.7846 −1.05978
\(958\) 30.8827 + 53.4904i 0.997774 + 1.72820i
\(959\) −0.928203 + 1.60770i −0.0299732 + 0.0519152i
\(960\) −1.36603 + 2.36603i −0.0440883 + 0.0763631i
\(961\) 72.9615 2.35360
\(962\) 0 0
\(963\) 78.8372 2.54049
\(964\) −1.19615 + 2.07180i −0.0385255 + 0.0667281i
\(965\) −5.00000 + 8.66025i −0.160956 + 0.278783i
\(966\) 6.00000 + 10.3923i 0.193047 + 0.334367i
\(967\) 50.3923 1.62051 0.810254 0.586079i \(-0.199329\pi\)
0.810254 + 0.586079i \(0.199329\pi\)
\(968\) 9.86603 + 17.0885i 0.317106 + 0.549244i
\(969\) 29.3205 + 50.7846i 0.941910 + 1.63144i
\(970\) −3.46410 −0.111226
\(971\) −9.46410 16.3923i −0.303717 0.526054i 0.673257 0.739408i \(-0.264895\pi\)
−0.976975 + 0.213354i \(0.931561\pi\)
\(972\) 9.36603 16.2224i 0.300415 0.520335i
\(973\) 12.3923 21.4641i 0.397279 0.688108i
\(974\) 45.7128 1.46473
\(975\) 0 0
\(976\) 41.9615 1.34316
\(977\) −7.85641 + 13.6077i −0.251349 + 0.435349i −0.963897 0.266274i \(-0.914207\pi\)
0.712549 + 0.701623i \(0.247541\pi\)
\(978\) −34.0526 + 58.9808i −1.08888 + 1.88600i
\(979\) −30.5885 52.9808i −0.977611 1.69327i
\(980\) −3.00000 −0.0958315
\(981\) 4.46410 + 7.73205i 0.142528 + 0.246865i
\(982\) 2.19615 + 3.80385i 0.0700820 + 0.121386i
\(983\) 34.3923 1.09694 0.548472 0.836169i \(-0.315210\pi\)
0.548472 + 0.836169i \(0.315210\pi\)
\(984\) −8.19615 14.1962i −0.261284 0.452557i
\(985\) −6.46410 + 11.1962i −0.205963 + 0.356739i
\(986\) −7.60770 + 13.1769i −0.242278 + 0.419638i
\(987\) 32.7846 1.04355
\(988\) 0 0
\(989\) −0.248711 −0.00790856
\(990\) −18.2942 + 31.6865i −0.581429 + 1.00706i
\(991\) −4.00000 + 6.92820i −0.127064 + 0.220082i −0.922538 0.385906i \(-0.873889\pi\)
0.795474 + 0.605988i \(0.207222\pi\)
\(992\) −26.4904 45.8827i −0.841070 1.45678i
\(993\) −7.07180 −0.224417
\(994\) −8.19615 14.1962i −0.259966 0.450275i
\(995\) −10.0000 17.3205i −0.317021 0.549097i
\(996\) 16.3923 0.519410
\(997\) −16.8038 29.1051i −0.532183 0.921768i −0.999294 0.0375696i \(-0.988038\pi\)
0.467111 0.884199i \(-0.345295\pi\)
\(998\) −33.7583 + 58.4711i −1.06860 + 1.85087i
\(999\) −8.00000 + 13.8564i −0.253109 + 0.438397i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.e.f.191.1 4
13.2 odd 12 845.2.m.a.361.1 4
13.3 even 3 inner 845.2.e.f.146.1 4
13.4 even 6 65.2.a.c.1.1 2
13.5 odd 4 845.2.m.c.316.1 4
13.6 odd 12 845.2.c.e.506.2 4
13.7 odd 12 845.2.c.e.506.4 4
13.8 odd 4 845.2.m.a.316.1 4
13.9 even 3 845.2.a.d.1.2 2
13.10 even 6 845.2.e.e.146.2 4
13.11 odd 12 845.2.m.c.361.1 4
13.12 even 2 845.2.e.e.191.2 4
39.17 odd 6 585.2.a.k.1.2 2
39.35 odd 6 7605.2.a.be.1.1 2
52.43 odd 6 1040.2.a.h.1.1 2
65.4 even 6 325.2.a.g.1.2 2
65.9 even 6 4225.2.a.w.1.1 2
65.17 odd 12 325.2.b.e.274.1 4
65.43 odd 12 325.2.b.e.274.4 4
91.69 odd 6 3185.2.a.k.1.1 2
104.43 odd 6 4160.2.a.bj.1.2 2
104.69 even 6 4160.2.a.y.1.1 2
143.43 odd 6 7865.2.a.h.1.2 2
156.95 even 6 9360.2.a.cm.1.1 2
195.17 even 12 2925.2.c.v.2224.4 4
195.134 odd 6 2925.2.a.z.1.1 2
195.173 even 12 2925.2.c.v.2224.1 4
260.199 odd 6 5200.2.a.ca.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.a.c.1.1 2 13.4 even 6
325.2.a.g.1.2 2 65.4 even 6
325.2.b.e.274.1 4 65.17 odd 12
325.2.b.e.274.4 4 65.43 odd 12
585.2.a.k.1.2 2 39.17 odd 6
845.2.a.d.1.2 2 13.9 even 3
845.2.c.e.506.2 4 13.6 odd 12
845.2.c.e.506.4 4 13.7 odd 12
845.2.e.e.146.2 4 13.10 even 6
845.2.e.e.191.2 4 13.12 even 2
845.2.e.f.146.1 4 13.3 even 3 inner
845.2.e.f.191.1 4 1.1 even 1 trivial
845.2.m.a.316.1 4 13.8 odd 4
845.2.m.a.361.1 4 13.2 odd 12
845.2.m.c.316.1 4 13.5 odd 4
845.2.m.c.361.1 4 13.11 odd 12
1040.2.a.h.1.1 2 52.43 odd 6
2925.2.a.z.1.1 2 195.134 odd 6
2925.2.c.v.2224.1 4 195.173 even 12
2925.2.c.v.2224.4 4 195.17 even 12
3185.2.a.k.1.1 2 91.69 odd 6
4160.2.a.y.1.1 2 104.69 even 6
4160.2.a.bj.1.2 2 104.43 odd 6
4225.2.a.w.1.1 2 65.9 even 6
5200.2.a.ca.1.2 2 260.199 odd 6
7605.2.a.be.1.1 2 39.35 odd 6
7865.2.a.h.1.2 2 143.43 odd 6
9360.2.a.cm.1.1 2 156.95 even 6