Properties

Label 1040.2.a.h
Level $1040$
Weight $2$
Character orbit 1040.a
Self dual yes
Analytic conductor $8.304$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,2,Mod(1,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.30444181021\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{3} - q^{5} - 2 q^{7} + ( - 2 \beta + 1) q^{9} + ( - \beta + 3) q^{11} + q^{13} + ( - \beta + 1) q^{15} + 2 \beta q^{17} + ( - 3 \beta + 1) q^{19} + ( - 2 \beta + 2) q^{21} + ( - \beta - 3) q^{23}+ \cdots + ( - 7 \beta + 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{5} - 4 q^{7} + 2 q^{9} + 6 q^{11} + 2 q^{13} + 2 q^{15} + 2 q^{19} + 4 q^{21} - 6 q^{23} + 2 q^{25} - 8 q^{27} - 12 q^{29} - 10 q^{31} - 12 q^{33} + 4 q^{35} - 8 q^{37} - 2 q^{39} - 10 q^{43}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 −2.73205 0 −1.00000 0 −2.00000 0 4.46410 0
1.2 0 0.732051 0 −1.00000 0 −2.00000 0 −2.46410 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1040.2.a.h 2
3.b odd 2 1 9360.2.a.cm 2
4.b odd 2 1 65.2.a.c 2
5.b even 2 1 5200.2.a.ca 2
8.b even 2 1 4160.2.a.bj 2
8.d odd 2 1 4160.2.a.y 2
12.b even 2 1 585.2.a.k 2
20.d odd 2 1 325.2.a.g 2
20.e even 4 2 325.2.b.e 4
28.d even 2 1 3185.2.a.k 2
44.c even 2 1 7865.2.a.h 2
52.b odd 2 1 845.2.a.d 2
52.f even 4 2 845.2.c.e 4
52.i odd 6 2 845.2.e.f 4
52.j odd 6 2 845.2.e.e 4
52.l even 12 2 845.2.m.a 4
52.l even 12 2 845.2.m.c 4
60.h even 2 1 2925.2.a.z 2
60.l odd 4 2 2925.2.c.v 4
156.h even 2 1 7605.2.a.be 2
260.g odd 2 1 4225.2.a.w 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.a.c 2 4.b odd 2 1
325.2.a.g 2 20.d odd 2 1
325.2.b.e 4 20.e even 4 2
585.2.a.k 2 12.b even 2 1
845.2.a.d 2 52.b odd 2 1
845.2.c.e 4 52.f even 4 2
845.2.e.e 4 52.j odd 6 2
845.2.e.f 4 52.i odd 6 2
845.2.m.a 4 52.l even 12 2
845.2.m.c 4 52.l even 12 2
1040.2.a.h 2 1.a even 1 1 trivial
2925.2.a.z 2 60.h even 2 1
2925.2.c.v 4 60.l odd 4 2
3185.2.a.k 2 28.d even 2 1
4160.2.a.y 2 8.d odd 2 1
4160.2.a.bj 2 8.b even 2 1
4225.2.a.w 2 260.g odd 2 1
5200.2.a.ca 2 5.b even 2 1
7605.2.a.be 2 156.h even 2 1
7865.2.a.h 2 44.c even 2 1
9360.2.a.cm 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1040))\):

\( T_{3}^{2} + 2T_{3} - 2 \) Copy content Toggle raw display
\( T_{7} + 2 \) Copy content Toggle raw display
\( T_{11}^{2} - 6T_{11} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 2T - 2 \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T + 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 6T + 6 \) Copy content Toggle raw display
$13$ \( (T - 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 12 \) Copy content Toggle raw display
$19$ \( T^{2} - 2T - 26 \) Copy content Toggle raw display
$23$ \( T^{2} + 6T + 6 \) Copy content Toggle raw display
$29$ \( T^{2} + 12T + 24 \) Copy content Toggle raw display
$31$ \( T^{2} + 10T - 2 \) Copy content Toggle raw display
$37$ \( (T + 4)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 12 \) Copy content Toggle raw display
$43$ \( T^{2} + 10T - 2 \) Copy content Toggle raw display
$47$ \( (T + 6)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 108 \) Copy content Toggle raw display
$59$ \( T^{2} - 6T - 138 \) Copy content Toggle raw display
$61$ \( T^{2} - 4T - 104 \) Copy content Toggle raw display
$67$ \( T^{2} - 8T - 92 \) Copy content Toggle raw display
$71$ \( T^{2} + 6T + 6 \) Copy content Toggle raw display
$73$ \( (T + 4)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 4T - 104 \) Copy content Toggle raw display
$83$ \( (T - 6)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 12T - 12 \) Copy content Toggle raw display
$97$ \( (T - 2)^{2} \) Copy content Toggle raw display
show more
show less