Properties

Label 845.2.e.e
Level $845$
Weight $2$
Character orbit 845.e
Analytic conductor $6.747$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(146,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.146");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + (\beta_{2} - \beta_1) q^{3} + (\beta_1 - 1) q^{4} - q^{5} + ( - \beta_{3} + \beta_{2} - 3 \beta_1 + 3) q^{6} + (2 \beta_1 - 2) q^{7} - \beta_{3} q^{8} + (2 \beta_{3} - 2 \beta_{2} + \beta_1 - 1) q^{9}+ \cdots + (7 \beta_{3} - 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 2 q^{4} - 4 q^{5} + 6 q^{6} - 4 q^{7} - 2 q^{9} + 6 q^{11} + 4 q^{12} + 2 q^{15} + 10 q^{16} - 24 q^{18} + 2 q^{19} + 2 q^{20} + 8 q^{21} - 6 q^{22} - 6 q^{23} - 6 q^{24} + 4 q^{25} + 16 q^{27}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{12}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{12}^{3} + \zeta_{12} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{12}^{3} + 2\zeta_{12} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 3 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( ( -\beta_{3} + 2\beta_{2} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1 + \beta_{1}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
146.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 1.50000i 0.366025 + 0.633975i −0.500000 + 0.866025i −1.00000 0.633975 1.09808i −1.00000 + 1.73205i −1.73205 1.23205 2.13397i 0.866025 + 1.50000i
146.2 0.866025 + 1.50000i −1.36603 2.36603i −0.500000 + 0.866025i −1.00000 2.36603 4.09808i −1.00000 + 1.73205i 1.73205 −2.23205 + 3.86603i −0.866025 1.50000i
191.1 −0.866025 + 1.50000i 0.366025 0.633975i −0.500000 0.866025i −1.00000 0.633975 + 1.09808i −1.00000 1.73205i −1.73205 1.23205 + 2.13397i 0.866025 1.50000i
191.2 0.866025 1.50000i −1.36603 + 2.36603i −0.500000 0.866025i −1.00000 2.36603 + 4.09808i −1.00000 1.73205i 1.73205 −2.23205 3.86603i −0.866025 + 1.50000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 845.2.e.e 4
13.b even 2 1 845.2.e.f 4
13.c even 3 1 65.2.a.c 2
13.c even 3 1 inner 845.2.e.e 4
13.d odd 4 1 845.2.m.a 4
13.d odd 4 1 845.2.m.c 4
13.e even 6 1 845.2.a.d 2
13.e even 6 1 845.2.e.f 4
13.f odd 12 2 845.2.c.e 4
13.f odd 12 1 845.2.m.a 4
13.f odd 12 1 845.2.m.c 4
39.h odd 6 1 7605.2.a.be 2
39.i odd 6 1 585.2.a.k 2
52.j odd 6 1 1040.2.a.h 2
65.l even 6 1 4225.2.a.w 2
65.n even 6 1 325.2.a.g 2
65.q odd 12 2 325.2.b.e 4
91.n odd 6 1 3185.2.a.k 2
104.n odd 6 1 4160.2.a.bj 2
104.r even 6 1 4160.2.a.y 2
143.k odd 6 1 7865.2.a.h 2
156.p even 6 1 9360.2.a.cm 2
195.x odd 6 1 2925.2.a.z 2
195.bl even 12 2 2925.2.c.v 4
260.v odd 6 1 5200.2.a.ca 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.a.c 2 13.c even 3 1
325.2.a.g 2 65.n even 6 1
325.2.b.e 4 65.q odd 12 2
585.2.a.k 2 39.i odd 6 1
845.2.a.d 2 13.e even 6 1
845.2.c.e 4 13.f odd 12 2
845.2.e.e 4 1.a even 1 1 trivial
845.2.e.e 4 13.c even 3 1 inner
845.2.e.f 4 13.b even 2 1
845.2.e.f 4 13.e even 6 1
845.2.m.a 4 13.d odd 4 1
845.2.m.a 4 13.f odd 12 1
845.2.m.c 4 13.d odd 4 1
845.2.m.c 4 13.f odd 12 1
1040.2.a.h 2 52.j odd 6 1
2925.2.a.z 2 195.x odd 6 1
2925.2.c.v 4 195.bl even 12 2
3185.2.a.k 2 91.n odd 6 1
4160.2.a.y 2 104.r even 6 1
4160.2.a.bj 2 104.n odd 6 1
4225.2.a.w 2 65.l even 6 1
5200.2.a.ca 2 260.v odd 6 1
7605.2.a.be 2 39.h odd 6 1
7865.2.a.h 2 143.k odd 6 1
9360.2.a.cm 2 156.p even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(845, [\chi])\):

\( T_{2}^{4} + 3T_{2}^{2} + 9 \) Copy content Toggle raw display
\( T_{7}^{2} + 2T_{7} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$3$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( (T + 1)^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 12T^{2} + 144 \) Copy content Toggle raw display
$19$ \( T^{4} - 2 T^{3} + \cdots + 676 \) Copy content Toggle raw display
$23$ \( T^{4} + 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$29$ \( T^{4} - 12 T^{3} + \cdots + 576 \) Copy content Toggle raw display
$31$ \( (T^{2} - 10 T - 2)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 4 T + 16)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 12T^{2} + 144 \) Copy content Toggle raw display
$43$ \( T^{4} + 10 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$47$ \( (T - 6)^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} - 108)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 6 T^{3} + \cdots + 19044 \) Copy content Toggle raw display
$61$ \( T^{4} + 4 T^{3} + \cdots + 10816 \) Copy content Toggle raw display
$67$ \( T^{4} - 8 T^{3} + \cdots + 8464 \) Copy content Toggle raw display
$71$ \( T^{4} + 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$73$ \( (T + 4)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 4 T - 104)^{2} \) Copy content Toggle raw display
$83$ \( (T + 6)^{4} \) Copy content Toggle raw display
$89$ \( T^{4} - 12 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$97$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
show more
show less