L(s) = 1 | − 0.571·2-s + 3-s − 1.67·4-s − 2.67·5-s − 0.571·6-s − 3.67·7-s + 2.10·8-s + 9-s + 1.52·10-s − 3.81·11-s − 1.67·12-s + 0.143·13-s + 2.10·14-s − 2.67·15-s + 2.14·16-s − 0.571·18-s + 4.47·20-s − 3.67·21-s + 2.18·22-s + 7.52·23-s + 2.10·24-s + 2.14·25-s − 0.0823·26-s + 27-s + 6.14·28-s − 5.34·29-s + 1.52·30-s + ⋯ |
L(s) = 1 | − 0.404·2-s + 0.577·3-s − 0.836·4-s − 1.19·5-s − 0.233·6-s − 1.38·7-s + 0.742·8-s + 0.333·9-s + 0.483·10-s − 1.15·11-s − 0.482·12-s + 0.0399·13-s + 0.561·14-s − 0.690·15-s + 0.535·16-s − 0.134·18-s + 0.999·20-s − 0.801·21-s + 0.465·22-s + 1.56·23-s + 0.428·24-s + 0.428·25-s − 0.0161·26-s + 0.192·27-s + 1.16·28-s − 0.992·29-s + 0.279·30-s + ⋯ |
Λ(s)=(=(1083s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1083s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.6192455677 |
L(21) |
≈ |
0.6192455677 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 19 | 1 |
good | 2 | 1+0.571T+2T2 |
| 5 | 1+2.67T+5T2 |
| 7 | 1+3.67T+7T2 |
| 11 | 1+3.81T+11T2 |
| 13 | 1−0.143T+13T2 |
| 17 | 1+17T2 |
| 23 | 1−7.52T+23T2 |
| 29 | 1+5.34T+29T2 |
| 31 | 1−8.81T+31T2 |
| 37 | 1+T+37T2 |
| 41 | 1−5.34T+41T2 |
| 43 | 1−2.81T+43T2 |
| 47 | 1+6T+47T2 |
| 53 | 1−8.01T+53T2 |
| 59 | 1−3.81T+59T2 |
| 61 | 1−11.4T+61T2 |
| 67 | 1−5.38T+67T2 |
| 71 | 1+13.6T+71T2 |
| 73 | 1+0.345T+73T2 |
| 79 | 1−6.52T+79T2 |
| 83 | 1+2.28T+83T2 |
| 89 | 1+8.67T+89T2 |
| 97 | 1+5.91T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.772177140935082487427771238511, −9.000219442929019549236696144475, −8.283619430828854722938608339671, −7.59236858195974866173836410043, −6.85775037422429070383656355746, −5.48178989383709369810953620445, −4.43637026507031162514883286637, −3.58097497061188803462347285515, −2.77759438759179916673741687981, −0.60456123115622303950618124783,
0.60456123115622303950618124783, 2.77759438759179916673741687981, 3.58097497061188803462347285515, 4.43637026507031162514883286637, 5.48178989383709369810953620445, 6.85775037422429070383656355746, 7.59236858195974866173836410043, 8.283619430828854722938608339671, 9.000219442929019549236696144475, 9.772177140935082487427771238511