Properties

Label 2-1083-1.1-c1-0-3
Degree $2$
Conductor $1083$
Sign $1$
Analytic cond. $8.64779$
Root an. cond. $2.94071$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.571·2-s + 3-s − 1.67·4-s − 2.67·5-s − 0.571·6-s − 3.67·7-s + 2.10·8-s + 9-s + 1.52·10-s − 3.81·11-s − 1.67·12-s + 0.143·13-s + 2.10·14-s − 2.67·15-s + 2.14·16-s − 0.571·18-s + 4.47·20-s − 3.67·21-s + 2.18·22-s + 7.52·23-s + 2.10·24-s + 2.14·25-s − 0.0823·26-s + 27-s + 6.14·28-s − 5.34·29-s + 1.52·30-s + ⋯
L(s)  = 1  − 0.404·2-s + 0.577·3-s − 0.836·4-s − 1.19·5-s − 0.233·6-s − 1.38·7-s + 0.742·8-s + 0.333·9-s + 0.483·10-s − 1.15·11-s − 0.482·12-s + 0.0399·13-s + 0.561·14-s − 0.690·15-s + 0.535·16-s − 0.134·18-s + 0.999·20-s − 0.801·21-s + 0.465·22-s + 1.56·23-s + 0.428·24-s + 0.428·25-s − 0.0161·26-s + 0.192·27-s + 1.16·28-s − 0.992·29-s + 0.279·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1083\)    =    \(3 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(8.64779\)
Root analytic conductor: \(2.94071\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1083,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6192455677\)
\(L(\frac12)\) \(\approx\) \(0.6192455677\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
19 \( 1 \)
good2 \( 1 + 0.571T + 2T^{2} \)
5 \( 1 + 2.67T + 5T^{2} \)
7 \( 1 + 3.67T + 7T^{2} \)
11 \( 1 + 3.81T + 11T^{2} \)
13 \( 1 - 0.143T + 13T^{2} \)
17 \( 1 + 17T^{2} \)
23 \( 1 - 7.52T + 23T^{2} \)
29 \( 1 + 5.34T + 29T^{2} \)
31 \( 1 - 8.81T + 31T^{2} \)
37 \( 1 + T + 37T^{2} \)
41 \( 1 - 5.34T + 41T^{2} \)
43 \( 1 - 2.81T + 43T^{2} \)
47 \( 1 + 6T + 47T^{2} \)
53 \( 1 - 8.01T + 53T^{2} \)
59 \( 1 - 3.81T + 59T^{2} \)
61 \( 1 - 11.4T + 61T^{2} \)
67 \( 1 - 5.38T + 67T^{2} \)
71 \( 1 + 13.6T + 71T^{2} \)
73 \( 1 + 0.345T + 73T^{2} \)
79 \( 1 - 6.52T + 79T^{2} \)
83 \( 1 + 2.28T + 83T^{2} \)
89 \( 1 + 8.67T + 89T^{2} \)
97 \( 1 + 5.91T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.772177140935082487427771238511, −9.000219442929019549236696144475, −8.283619430828854722938608339671, −7.59236858195974866173836410043, −6.85775037422429070383656355746, −5.48178989383709369810953620445, −4.43637026507031162514883286637, −3.58097497061188803462347285515, −2.77759438759179916673741687981, −0.60456123115622303950618124783, 0.60456123115622303950618124783, 2.77759438759179916673741687981, 3.58097497061188803462347285515, 4.43637026507031162514883286637, 5.48178989383709369810953620445, 6.85775037422429070383656355746, 7.59236858195974866173836410043, 8.283619430828854722938608339671, 9.000219442929019549236696144475, 9.772177140935082487427771238511

Graph of the $Z$-function along the critical line