Properties

Label 1083.2.a.l
Level $1083$
Weight $2$
Character orbit 1083.a
Self dual yes
Analytic conductor $8.648$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1083,2,Mod(1,1083)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1083, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1083.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1083 = 3 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1083.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.64779853890\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + q^{3} + (\beta_{2} + 2) q^{4} + (\beta_{2} + 1) q^{5} - \beta_1 q^{6} + \beta_{2} q^{7} + ( - \beta_{2} - \beta_1 - 1) q^{8} + q^{9} + ( - \beta_{2} - 2 \beta_1 - 1) q^{10} + (\beta_{2} - 2 \beta_1 + 1) q^{11}+ \cdots + (\beta_{2} - 2 \beta_1 + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 3 q^{3} + 5 q^{4} + 2 q^{5} - q^{6} - q^{7} - 3 q^{8} + 3 q^{9} - 4 q^{10} + 5 q^{12} - q^{13} - 3 q^{14} + 2 q^{15} + 5 q^{16} - q^{18} + 22 q^{20} - q^{21} + 18 q^{22} + 14 q^{23}+ \cdots - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 5x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.51414
0.571993
−2.08613
−2.51414 1.00000 4.32088 3.32088 −2.51414 2.32088 −5.83502 1.00000 −8.34916
1.2 −0.571993 1.00000 −1.67282 −2.67282 −0.571993 −3.67282 2.10083 1.00000 1.52884
1.3 2.08613 1.00000 2.35194 1.35194 2.08613 0.351939 0.734191 1.00000 2.82032
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1083.2.a.l 3
3.b odd 2 1 3249.2.a.y 3
19.b odd 2 1 1083.2.a.o 3
19.c even 3 2 57.2.e.b 6
57.d even 2 1 3249.2.a.t 3
57.h odd 6 2 171.2.f.b 6
76.g odd 6 2 912.2.q.l 6
228.m even 6 2 2736.2.s.z 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
57.2.e.b 6 19.c even 3 2
171.2.f.b 6 57.h odd 6 2
912.2.q.l 6 76.g odd 6 2
1083.2.a.l 3 1.a even 1 1 trivial
1083.2.a.o 3 19.b odd 2 1
2736.2.s.z 6 228.m even 6 2
3249.2.a.t 3 57.d even 2 1
3249.2.a.y 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1083))\):

\( T_{2}^{3} + T_{2}^{2} - 5T_{2} - 3 \) Copy content Toggle raw display
\( T_{5}^{3} - 2T_{5}^{2} - 8T_{5} + 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + T^{2} - 5T - 3 \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 2 T^{2} + \cdots + 12 \) Copy content Toggle raw display
$7$ \( T^{3} + T^{2} - 9T + 3 \) Copy content Toggle raw display
$11$ \( T^{3} - 24T - 36 \) Copy content Toggle raw display
$13$ \( T^{3} + T^{2} - 21T + 3 \) Copy content Toggle raw display
$17$ \( T^{3} \) Copy content Toggle raw display
$19$ \( T^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 14 T^{2} + \cdots + 156 \) Copy content Toggle raw display
$29$ \( T^{3} - 4 T^{2} + \cdots + 96 \) Copy content Toggle raw display
$31$ \( T^{3} - 15 T^{2} + \cdots + 31 \) Copy content Toggle raw display
$37$ \( (T + 1)^{3} \) Copy content Toggle raw display
$41$ \( T^{3} + 4 T^{2} + \cdots - 96 \) Copy content Toggle raw display
$43$ \( T^{3} + 3 T^{2} + \cdots + 13 \) Copy content Toggle raw display
$47$ \( (T + 6)^{3} \) Copy content Toggle raw display
$53$ \( T^{3} + 6 T^{2} + \cdots - 324 \) Copy content Toggle raw display
$59$ \( T^{3} - 24T + 36 \) Copy content Toggle raw display
$61$ \( T^{3} - 13 T^{2} + \cdots + 73 \) Copy content Toggle raw display
$67$ \( T^{3} - 9 T^{2} + \cdots + 541 \) Copy content Toggle raw display
$71$ \( T^{3} + 18 T^{2} + \cdots - 648 \) Copy content Toggle raw display
$73$ \( T^{3} - 19 T^{2} + \cdots + 31 \) Copy content Toggle raw display
$79$ \( T^{3} - 11 T^{2} + \cdots + 171 \) Copy content Toggle raw display
$83$ \( T^{3} + 4 T^{2} + \cdots - 192 \) Copy content Toggle raw display
$89$ \( T^{3} + 16 T^{2} + \cdots + 108 \) Copy content Toggle raw display
$97$ \( T^{3} + 2 T^{2} + \cdots - 1448 \) Copy content Toggle raw display
show more
show less