Properties

Label 912.2.q.l
Level $912$
Weight $2$
Character orbit 912.q
Analytic conductor $7.282$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,2,Mod(49,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.954288.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 57)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + 1) q^{3} + ( - \beta_{3} + \beta_{2} - 1) q^{5} + ( - \beta_{3} - \beta_1) q^{7} - \beta_{2} q^{9} + ( - \beta_{4} - \beta_{3} - \beta_1) q^{11} + ( - \beta_{5} + \beta_{4}) q^{13}+ \cdots + ( - \beta_{5} + \beta_{4} + \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{3} - 2 q^{5} + 2 q^{7} - 3 q^{9} + q^{13} + 2 q^{15} - 4 q^{19} + q^{21} + 14 q^{23} - 5 q^{25} - 6 q^{27} - 4 q^{29} - 30 q^{31} + 18 q^{35} - 6 q^{37} + 2 q^{39} + 4 q^{41} - 3 q^{43} + 4 q^{45}+ \cdots + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} - 4\nu^{4} + \nu^{3} - 9\nu^{2} + 21\nu + 9 ) / 27 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{5} - \nu^{4} - 2\nu^{3} + 12\nu + 36 ) / 27 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{5} + 8\nu^{4} - 2\nu^{3} - 9\nu^{2} + 12\nu - 18 ) / 27 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -4\nu^{5} - 2\nu^{4} + 14\nu^{3} + 18\nu^{2} + 24\nu + 45 ) / 27 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 10\nu^{5} + 5\nu^{4} - 8\nu^{3} + 36\nu^{2} - 6\nu - 153 ) / 27 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{4} + 2\beta_{3} + 3\beta_{2} + 4\beta_1 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} + \beta_{4} - \beta_{3} + 3\beta_{2} - 2\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -2\beta_{5} + 7\beta_{4} + 2\beta_{3} - 24\beta_{2} + 4\beta _1 + 9 ) / 6 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( \beta_{5} + \beta_{4} + 8\beta_{3} - 6\beta_{2} - 2\beta _1 + 18 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 7\beta_{5} - 2\beta_{4} + 2\beta_{3} - 33\beta_{2} + 22\beta _1 + 81 ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(-\beta_{2}\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
0.403374 + 1.68443i
1.71903 0.211943i
−1.62241 0.606458i
0.403374 1.68443i
1.71903 + 0.211943i
−1.62241 + 0.606458i
0 0.500000 0.866025i 0 −1.66044 + 2.87597i 0 −2.32088 0 −0.500000 0.866025i 0
49.2 0 0.500000 0.866025i 0 −0.675970 + 1.17081i 0 −0.351939 0 −0.500000 0.866025i 0
49.3 0 0.500000 0.866025i 0 1.33641 2.31473i 0 3.67282 0 −0.500000 0.866025i 0
577.1 0 0.500000 + 0.866025i 0 −1.66044 2.87597i 0 −2.32088 0 −0.500000 + 0.866025i 0
577.2 0 0.500000 + 0.866025i 0 −0.675970 1.17081i 0 −0.351939 0 −0.500000 + 0.866025i 0
577.3 0 0.500000 + 0.866025i 0 1.33641 + 2.31473i 0 3.67282 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 912.2.q.l 6
3.b odd 2 1 2736.2.s.z 6
4.b odd 2 1 57.2.e.b 6
12.b even 2 1 171.2.f.b 6
19.c even 3 1 inner 912.2.q.l 6
57.h odd 6 1 2736.2.s.z 6
76.f even 6 1 1083.2.a.o 3
76.g odd 6 1 57.2.e.b 6
76.g odd 6 1 1083.2.a.l 3
228.m even 6 1 171.2.f.b 6
228.m even 6 1 3249.2.a.y 3
228.n odd 6 1 3249.2.a.t 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
57.2.e.b 6 4.b odd 2 1
57.2.e.b 6 76.g odd 6 1
171.2.f.b 6 12.b even 2 1
171.2.f.b 6 228.m even 6 1
912.2.q.l 6 1.a even 1 1 trivial
912.2.q.l 6 19.c even 3 1 inner
1083.2.a.l 3 76.g odd 6 1
1083.2.a.o 3 76.f even 6 1
2736.2.s.z 6 3.b odd 2 1
2736.2.s.z 6 57.h odd 6 1
3249.2.a.t 3 228.n odd 6 1
3249.2.a.y 3 228.m even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(912, [\chi])\):

\( T_{5}^{6} + 2T_{5}^{5} + 12T_{5}^{4} + 8T_{5}^{3} + 88T_{5}^{2} + 96T_{5} + 144 \) Copy content Toggle raw display
\( T_{7}^{3} - T_{7}^{2} - 9T_{7} - 3 \) Copy content Toggle raw display
\( T_{13}^{6} - T_{13}^{5} + 22T_{13}^{4} + 27T_{13}^{3} + 438T_{13}^{2} + 63T_{13} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} + 2 T^{5} + \cdots + 144 \) Copy content Toggle raw display
$7$ \( (T^{3} - T^{2} - 9 T - 3)^{2} \) Copy content Toggle raw display
$11$ \( (T^{3} - 24 T + 36)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} - T^{5} + 22 T^{4} + \cdots + 9 \) Copy content Toggle raw display
$17$ \( T^{6} \) Copy content Toggle raw display
$19$ \( T^{6} + 4 T^{5} + \cdots + 6859 \) Copy content Toggle raw display
$23$ \( T^{6} - 14 T^{5} + \cdots + 24336 \) Copy content Toggle raw display
$29$ \( T^{6} + 4 T^{5} + \cdots + 9216 \) Copy content Toggle raw display
$31$ \( (T^{3} + 15 T^{2} + \cdots - 31)^{2} \) Copy content Toggle raw display
$37$ \( (T + 1)^{6} \) Copy content Toggle raw display
$41$ \( T^{6} - 4 T^{5} + \cdots + 9216 \) Copy content Toggle raw display
$43$ \( T^{6} + 3 T^{5} + \cdots + 169 \) Copy content Toggle raw display
$47$ \( (T^{2} + 6 T + 36)^{3} \) Copy content Toggle raw display
$53$ \( T^{6} - 6 T^{5} + \cdots + 104976 \) Copy content Toggle raw display
$59$ \( T^{6} + 24 T^{4} + \cdots + 1296 \) Copy content Toggle raw display
$61$ \( T^{6} + 13 T^{5} + \cdots + 5329 \) Copy content Toggle raw display
$67$ \( T^{6} - 9 T^{5} + \cdots + 292681 \) Copy content Toggle raw display
$71$ \( T^{6} + 18 T^{5} + \cdots + 419904 \) Copy content Toggle raw display
$73$ \( T^{6} + 19 T^{5} + \cdots + 961 \) Copy content Toggle raw display
$79$ \( T^{6} - 11 T^{5} + \cdots + 29241 \) Copy content Toggle raw display
$83$ \( (T^{3} - 4 T^{2} + \cdots + 192)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} - 16 T^{5} + \cdots + 11664 \) Copy content Toggle raw display
$97$ \( T^{6} - 2 T^{5} + \cdots + 2096704 \) Copy content Toggle raw display
show more
show less