Properties

Label 1083.2.a.l.1.2
Level 10831083
Weight 22
Character 1083.1
Self dual yes
Analytic conductor 8.6488.648
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1083,2,Mod(1,1083)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1083, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1083.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1083=3192 1083 = 3 \cdot 19^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1083.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 8.647798538908.64779853890
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.564.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x3x25x+3 x^{3} - x^{2} - 5x + 3 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 57)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 0.5719930.571993 of defining polynomial
Character χ\chi == 1083.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q0.571993q2+1.00000q31.67282q42.67282q50.571993q63.67282q7+2.10083q8+1.00000q9+1.52884q103.81681q111.67282q12+0.143987q13+2.10083q142.67282q15+2.14399q160.571993q18+4.47116q203.67282q21+2.18319q22+7.52884q23+2.10083q24+2.14399q250.0823593q26+1.00000q27+6.14399q285.34565q29+1.52884q30+8.81681q315.42801q323.81681q33+9.81681q351.67282q361.00000q37+0.143987q395.61515q40+5.34565q41+2.10083q42+2.81681q43+6.38485q442.67282q454.30644q466.00000q47+2.14399q48+6.48963q491.22635q500.240864q52+8.01847q530.571993q54+10.2017q557.71598q56+3.05767q58+3.81681q59+4.47116q60+11.4896q615.04316q623.67282q631.18319q640.384851q65+2.18319q66+5.38485q67+7.52884q695.61515q7013.6336q71+2.10083q720.345647q73+0.571993q74+2.14399q75+14.0185q770.0823593q78+6.52884q795.73050q80+1.00000q813.05767q822.28797q83+6.14399q841.61120q865.34565q878.01847q888.67282q89+1.52884q900.528837q9112.5944q92+8.81681q93+3.43196q945.42801q965.91369q973.71203q983.81681q99+O(q100)q-0.571993 q^{2} +1.00000 q^{3} -1.67282 q^{4} -2.67282 q^{5} -0.571993 q^{6} -3.67282 q^{7} +2.10083 q^{8} +1.00000 q^{9} +1.52884 q^{10} -3.81681 q^{11} -1.67282 q^{12} +0.143987 q^{13} +2.10083 q^{14} -2.67282 q^{15} +2.14399 q^{16} -0.571993 q^{18} +4.47116 q^{20} -3.67282 q^{21} +2.18319 q^{22} +7.52884 q^{23} +2.10083 q^{24} +2.14399 q^{25} -0.0823593 q^{26} +1.00000 q^{27} +6.14399 q^{28} -5.34565 q^{29} +1.52884 q^{30} +8.81681 q^{31} -5.42801 q^{32} -3.81681 q^{33} +9.81681 q^{35} -1.67282 q^{36} -1.00000 q^{37} +0.143987 q^{39} -5.61515 q^{40} +5.34565 q^{41} +2.10083 q^{42} +2.81681 q^{43} +6.38485 q^{44} -2.67282 q^{45} -4.30644 q^{46} -6.00000 q^{47} +2.14399 q^{48} +6.48963 q^{49} -1.22635 q^{50} -0.240864 q^{52} +8.01847 q^{53} -0.571993 q^{54} +10.2017 q^{55} -7.71598 q^{56} +3.05767 q^{58} +3.81681 q^{59} +4.47116 q^{60} +11.4896 q^{61} -5.04316 q^{62} -3.67282 q^{63} -1.18319 q^{64} -0.384851 q^{65} +2.18319 q^{66} +5.38485 q^{67} +7.52884 q^{69} -5.61515 q^{70} -13.6336 q^{71} +2.10083 q^{72} -0.345647 q^{73} +0.571993 q^{74} +2.14399 q^{75} +14.0185 q^{77} -0.0823593 q^{78} +6.52884 q^{79} -5.73050 q^{80} +1.00000 q^{81} -3.05767 q^{82} -2.28797 q^{83} +6.14399 q^{84} -1.61120 q^{86} -5.34565 q^{87} -8.01847 q^{88} -8.67282 q^{89} +1.52884 q^{90} -0.528837 q^{91} -12.5944 q^{92} +8.81681 q^{93} +3.43196 q^{94} -5.42801 q^{96} -5.91369 q^{97} -3.71203 q^{98} -3.81681 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3qq2+3q3+5q4+2q5q6q73q8+3q94q10+5q12q133q14+2q15+5q16q18+22q20q21+18q22+14q23+14q98+O(q100) 3 q - q^{2} + 3 q^{3} + 5 q^{4} + 2 q^{5} - q^{6} - q^{7} - 3 q^{8} + 3 q^{9} - 4 q^{10} + 5 q^{12} - q^{13} - 3 q^{14} + 2 q^{15} + 5 q^{16} - q^{18} + 22 q^{20} - q^{21} + 18 q^{22} + 14 q^{23}+ \cdots - 14 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.571993 −0.404460 −0.202230 0.979338i 0.564819π-0.564819\pi
−0.202230 + 0.979338i 0.564819π0.564819\pi
33 1.00000 0.577350
44 −1.67282 −0.836412
55 −2.67282 −1.19532 −0.597662 0.801749i 0.703903π-0.703903\pi
−0.597662 + 0.801749i 0.703903π0.703903\pi
66 −0.571993 −0.233515
77 −3.67282 −1.38820 −0.694098 0.719880i 0.744197π-0.744197\pi
−0.694098 + 0.719880i 0.744197π0.744197\pi
88 2.10083 0.742756
99 1.00000 0.333333
1010 1.52884 0.483461
1111 −3.81681 −1.15081 −0.575406 0.817868i 0.695156π-0.695156\pi
−0.575406 + 0.817868i 0.695156π0.695156\pi
1212 −1.67282 −0.482903
1313 0.143987 0.0399347 0.0199673 0.999801i 0.493644π-0.493644\pi
0.0199673 + 0.999801i 0.493644π0.493644\pi
1414 2.10083 0.561471
1515 −2.67282 −0.690120
1616 2.14399 0.535997
1717 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1818 −0.571993 −0.134820
1919 0 0
2020 4.47116 0.999782
2121 −3.67282 −0.801476
2222 2.18319 0.465458
2323 7.52884 1.56987 0.784936 0.619577i 0.212696π-0.212696\pi
0.784936 + 0.619577i 0.212696π0.212696\pi
2424 2.10083 0.428830
2525 2.14399 0.428797
2626 −0.0823593 −0.0161520
2727 1.00000 0.192450
2828 6.14399 1.16110
2929 −5.34565 −0.992662 −0.496331 0.868133i 0.665320π-0.665320\pi
−0.496331 + 0.868133i 0.665320π0.665320\pi
3030 1.52884 0.279126
3131 8.81681 1.58355 0.791773 0.610816i 0.209158π-0.209158\pi
0.791773 + 0.610816i 0.209158π0.209158\pi
3232 −5.42801 −0.959545
3333 −3.81681 −0.664421
3434 0 0
3535 9.81681 1.65934
3636 −1.67282 −0.278804
3737 −1.00000 −0.164399 −0.0821995 0.996616i 0.526194π-0.526194\pi
−0.0821995 + 0.996616i 0.526194π0.526194\pi
3838 0 0
3939 0.143987 0.0230563
4040 −5.61515 −0.887833
4141 5.34565 0.834850 0.417425 0.908711i 0.362933π-0.362933\pi
0.417425 + 0.908711i 0.362933π0.362933\pi
4242 2.10083 0.324165
4343 2.81681 0.429560 0.214780 0.976663i 0.431097π-0.431097\pi
0.214780 + 0.976663i 0.431097π0.431097\pi
4444 6.38485 0.962552
4545 −2.67282 −0.398441
4646 −4.30644 −0.634951
4747 −6.00000 −0.875190 −0.437595 0.899172i 0.644170π-0.644170\pi
−0.437595 + 0.899172i 0.644170π0.644170\pi
4848 2.14399 0.309458
4949 6.48963 0.927091
5050 −1.22635 −0.173431
5151 0 0
5252 −0.240864 −0.0334018
5353 8.01847 1.10142 0.550711 0.834696i 0.314357π-0.314357\pi
0.550711 + 0.834696i 0.314357π0.314357\pi
5454 −0.571993 −0.0778384
5555 10.2017 1.37559
5656 −7.71598 −1.03109
5757 0 0
5858 3.05767 0.401492
5959 3.81681 0.496906 0.248453 0.968644i 0.420078π-0.420078\pi
0.248453 + 0.968644i 0.420078π0.420078\pi
6060 4.47116 0.577225
6161 11.4896 1.47110 0.735548 0.677472i 0.236925π-0.236925\pi
0.735548 + 0.677472i 0.236925π0.236925\pi
6262 −5.04316 −0.640481
6363 −3.67282 −0.462732
6464 −1.18319 −0.147899
6565 −0.384851 −0.0477348
6666 2.18319 0.268732
6767 5.38485 0.657864 0.328932 0.944354i 0.393311π-0.393311\pi
0.328932 + 0.944354i 0.393311π0.393311\pi
6868 0 0
6969 7.52884 0.906365
7070 −5.61515 −0.671139
7171 −13.6336 −1.61801 −0.809007 0.587800i 0.799994π-0.799994\pi
−0.809007 + 0.587800i 0.799994π0.799994\pi
7272 2.10083 0.247585
7373 −0.345647 −0.0404550 −0.0202275 0.999795i 0.506439π-0.506439\pi
−0.0202275 + 0.999795i 0.506439π0.506439\pi
7474 0.571993 0.0664929
7575 2.14399 0.247566
7676 0 0
7777 14.0185 1.59755
7878 −0.0823593 −0.00932536
7979 6.52884 0.734552 0.367276 0.930112i 0.380291π-0.380291\pi
0.367276 + 0.930112i 0.380291π0.380291\pi
8080 −5.73050 −0.640689
8181 1.00000 0.111111
8282 −3.05767 −0.337664
8383 −2.28797 −0.251138 −0.125569 0.992085i 0.540076π-0.540076\pi
−0.125569 + 0.992085i 0.540076π0.540076\pi
8484 6.14399 0.670364
8585 0 0
8686 −1.61120 −0.173740
8787 −5.34565 −0.573114
8888 −8.01847 −0.854772
8989 −8.67282 −0.919317 −0.459659 0.888096i 0.652028π-0.652028\pi
−0.459659 + 0.888096i 0.652028π0.652028\pi
9090 1.52884 0.161154
9191 −0.528837 −0.0554372
9292 −12.5944 −1.31306
9393 8.81681 0.914261
9494 3.43196 0.353980
9595 0 0
9696 −5.42801 −0.553994
9797 −5.91369 −0.600444 −0.300222 0.953869i 0.597061π-0.597061\pi
−0.300222 + 0.953869i 0.597061π0.597061\pi
9898 −3.71203 −0.374971
9999 −3.81681 −0.383604
100100 −3.58651 −0.358651
101101 8.28797 0.824684 0.412342 0.911029i 0.364711π-0.364711\pi
0.412342 + 0.911029i 0.364711π0.364711\pi
102102 0 0
103103 14.6521 1.44371 0.721857 0.692043i 0.243289π-0.243289\pi
0.721857 + 0.692043i 0.243289π0.243289\pi
104104 0.302491 0.0296617
105105 9.81681 0.958023
106106 −4.58651 −0.445481
107107 −16.6913 −1.61361 −0.806804 0.590819i 0.798805π-0.798805\pi
−0.806804 + 0.590819i 0.798805π0.798805\pi
108108 −1.67282 −0.160968
109109 7.83528 0.750484 0.375242 0.926927i 0.377560π-0.377560\pi
0.375242 + 0.926927i 0.377560π0.377560\pi
110110 −5.83528 −0.556372
111111 −1.00000 −0.0949158
112112 −7.87448 −0.744069
113113 −6.38485 −0.600636 −0.300318 0.953839i 0.597093π-0.597093\pi
−0.300318 + 0.953839i 0.597093π0.597093\pi
114114 0 0
115115 −20.1233 −1.87650
116116 8.94233 0.830274
117117 0.143987 0.0133116
118118 −2.18319 −0.200979
119119 0 0
120120 −5.61515 −0.512591
121121 3.56804 0.324367
122122 −6.57199 −0.595000
123123 5.34565 0.482001
124124 −14.7490 −1.32450
125125 7.63362 0.682772
126126 2.10083 0.187157
127127 2.65435 0.235536 0.117768 0.993041i 0.462426π-0.462426\pi
0.117768 + 0.993041i 0.462426π0.462426\pi
128128 11.5328 1.01936
129129 2.81681 0.248006
130130 0.220132 0.0193069
131131 −11.3456 −0.991274 −0.495637 0.868530i 0.665065π-0.665065\pi
−0.495637 + 0.868530i 0.665065π0.665065\pi
132132 6.38485 0.555730
133133 0 0
134134 −3.08010 −0.266080
135135 −2.67282 −0.230040
136136 0 0
137137 −1.63362 −0.139570 −0.0697848 0.997562i 0.522231π-0.522231\pi
−0.0697848 + 0.997562i 0.522231π0.522231\pi
138138 −4.30644 −0.366589
139139 7.50811 0.636829 0.318415 0.947952i 0.396850π-0.396850\pi
0.318415 + 0.947952i 0.396850π0.396850\pi
140140 −16.4218 −1.38789
141141 −6.00000 −0.505291
142142 7.79834 0.654422
143143 −0.549569 −0.0459573
144144 2.14399 0.178666
145145 14.2880 1.18655
146146 0.197708 0.0163624
147147 6.48963 0.535256
148148 1.67282 0.137505
149149 14.0185 1.14844 0.574219 0.818702i 0.305306π-0.305306\pi
0.574219 + 0.818702i 0.305306π0.305306\pi
150150 −1.22635 −0.100131
151151 11.0577 0.899861 0.449930 0.893064i 0.351449π-0.351449\pi
0.449930 + 0.893064i 0.351449π0.351449\pi
152152 0 0
153153 0 0
154154 −8.01847 −0.646147
155155 −23.5658 −1.89285
156156 −0.240864 −0.0192846
157157 14.0577 1.12192 0.560962 0.827841i 0.310431π-0.310431\pi
0.560962 + 0.827841i 0.310431π0.310431\pi
158158 −3.73445 −0.297097
159159 8.01847 0.635906
160160 14.5081 1.14697
161161 −27.6521 −2.17929
162162 −0.571993 −0.0449400
163163 4.61515 0.361486 0.180743 0.983530i 0.442150π-0.442150\pi
0.180743 + 0.983530i 0.442150π0.442150\pi
164164 −8.94233 −0.698278
165165 10.2017 0.794198
166166 1.30871 0.101575
167167 −12.2201 −0.945622 −0.472811 0.881164i 0.656761π-0.656761\pi
−0.472811 + 0.881164i 0.656761π0.656761\pi
168168 −7.71598 −0.595301
169169 −12.9793 −0.998405
170170 0 0
171171 0 0
172172 −4.71203 −0.359289
173173 15.0577 1.14481 0.572407 0.819970i 0.306010π-0.306010\pi
0.572407 + 0.819970i 0.306010π0.306010\pi
174174 3.05767 0.231802
175175 −7.87448 −0.595255
176176 −8.18319 −0.616831
177177 3.81681 0.286889
178178 4.96080 0.371827
179179 −15.1625 −1.13330 −0.566648 0.823960i 0.691760π-0.691760\pi
−0.566648 + 0.823960i 0.691760π0.691760\pi
180180 4.47116 0.333261
181181 12.2017 0.906942 0.453471 0.891271i 0.350186π-0.350186\pi
0.453471 + 0.891271i 0.350186π0.350186\pi
182182 0.302491 0.0224221
183183 11.4896 0.849338
184184 15.8168 1.16603
185185 2.67282 0.196510
186186 −5.04316 −0.369782
187187 0 0
188188 10.0369 0.732019
189189 −3.67282 −0.267159
190190 0 0
191191 5.45043 0.394379 0.197190 0.980365i 0.436819π-0.436819\pi
0.197190 + 0.980365i 0.436819π0.436819\pi
192192 −1.18319 −0.0853894
193193 −0.510366 −0.0367370 −0.0183685 0.999831i 0.505847π-0.505847\pi
−0.0183685 + 0.999831i 0.505847π0.505847\pi
194194 3.38259 0.242856
195195 −0.384851 −0.0275597
196196 −10.8560 −0.775430
197197 22.9608 1.63589 0.817945 0.575297i 0.195114π-0.195114\pi
0.817945 + 0.575297i 0.195114π0.195114\pi
198198 2.18319 0.155153
199199 −0.125515 −0.00889755 −0.00444878 0.999990i 0.501416π-0.501416\pi
−0.00444878 + 0.999990i 0.501416π0.501416\pi
200200 4.50415 0.318492
201201 5.38485 0.379818
202202 −4.74066 −0.333552
203203 19.6336 1.37801
204204 0 0
205205 −14.2880 −0.997915
206206 −8.38090 −0.583925
207207 7.52884 0.523290
208208 0.308705 0.0214049
209209 0 0
210210 −5.61515 −0.387482
211211 24.8538 1.71100 0.855501 0.517800i 0.173249π-0.173249\pi
0.855501 + 0.517800i 0.173249π0.173249\pi
212212 −13.4135 −0.921242
213213 −13.6336 −0.934160
214214 9.54731 0.652641
215215 −7.52884 −0.513462
216216 2.10083 0.142943
217217 −32.3826 −2.19827
218218 −4.48173 −0.303541
219219 −0.345647 −0.0233567
220220 −17.0656 −1.15056
221221 0 0
222222 0.571993 0.0383897
223223 −23.7961 −1.59350 −0.796752 0.604307i 0.793450π-0.793450\pi
−0.796752 + 0.604307i 0.793450π0.793450\pi
224224 19.9361 1.33204
225225 2.14399 0.142932
226226 3.65209 0.242934
227227 9.81681 0.651565 0.325782 0.945445i 0.394372π-0.394372\pi
0.325782 + 0.945445i 0.394372π0.394372\pi
228228 0 0
229229 0.143987 0.00951490 0.00475745 0.999989i 0.498486π-0.498486\pi
0.00475745 + 0.999989i 0.498486π0.498486\pi
230230 11.5104 0.758971
231231 14.0185 0.922348
232232 −11.2303 −0.737305
233233 10.5759 0.692853 0.346427 0.938077i 0.387395π-0.387395\pi
0.346427 + 0.938077i 0.387395π0.387395\pi
234234 −0.0823593 −0.00538400
235235 16.0369 1.04613
236236 −6.38485 −0.415618
237237 6.52884 0.424094
238238 0 0
239239 −9.81681 −0.634997 −0.317498 0.948259i 0.602843π-0.602843\pi
−0.317498 + 0.948259i 0.602843π0.602843\pi
240240 −5.73050 −0.369902
241241 1.94233 0.125116 0.0625581 0.998041i 0.480074π-0.480074\pi
0.0625581 + 0.998041i 0.480074π0.480074\pi
242242 −2.04090 −0.131194
243243 1.00000 0.0641500
244244 −19.2201 −1.23044
245245 −17.3456 −1.10817
246246 −3.05767 −0.194950
247247 0 0
248248 18.5226 1.17619
249249 −2.28797 −0.144994
250250 −4.36638 −0.276154
251251 13.6336 0.860546 0.430273 0.902699i 0.358417π-0.358417\pi
0.430273 + 0.902699i 0.358417π0.358417\pi
252252 6.14399 0.387035
253253 −28.7361 −1.80663
254254 −1.51827 −0.0952648
255255 0 0
256256 −4.23030 −0.264394
257257 −12.5944 −0.785618 −0.392809 0.919620i 0.628497π-0.628497\pi
−0.392809 + 0.919620i 0.628497π0.628497\pi
258258 −1.61120 −0.100309
259259 3.67282 0.228218
260260 0.643787 0.0399260
261261 −5.34565 −0.330887
262262 6.48963 0.400931
263263 −1.63362 −0.100733 −0.0503667 0.998731i 0.516039π-0.516039\pi
−0.0503667 + 0.998731i 0.516039π0.516039\pi
264264 −8.01847 −0.493503
265265 −21.4320 −1.31655
266266 0 0
267267 −8.67282 −0.530768
268268 −9.00791 −0.550245
269269 −21.6521 −1.32015 −0.660076 0.751199i 0.729476π-0.729476\pi
−0.660076 + 0.751199i 0.729476π0.729476\pi
270270 1.52884 0.0930421
271271 −21.5552 −1.30939 −0.654693 0.755895i 0.727202π-0.727202\pi
−0.654693 + 0.755895i 0.727202π0.727202\pi
272272 0 0
273273 −0.528837 −0.0320067
274274 0.934420 0.0564504
275275 −8.18319 −0.493465
276276 −12.5944 −0.758095
277277 7.62571 0.458185 0.229092 0.973405i 0.426424π-0.426424\pi
0.229092 + 0.973405i 0.426424π0.426424\pi
278278 −4.29459 −0.257572
279279 8.81681 0.527849
280280 20.6235 1.23249
281281 −1.69356 −0.101029 −0.0505145 0.998723i 0.516086π-0.516086\pi
−0.0505145 + 0.998723i 0.516086π0.516086\pi
282282 3.43196 0.204370
283283 10.2880 0.611557 0.305778 0.952103i 0.401083π-0.401083\pi
0.305778 + 0.952103i 0.401083π0.401083\pi
284284 22.8066 1.35333
285285 0 0
286286 0.314350 0.0185879
287287 −19.6336 −1.15894
288288 −5.42801 −0.319848
289289 −17.0000 −1.00000
290290 −8.17262 −0.479913
291291 −5.91369 −0.346667
292292 0.578207 0.0338370
293293 12.1153 0.707786 0.353893 0.935286i 0.384858π-0.384858\pi
0.353893 + 0.935286i 0.384858π0.384858\pi
294294 −3.71203 −0.216490
295295 −10.2017 −0.593964
296296 −2.10083 −0.122108
297297 −3.81681 −0.221474
298298 −8.01847 −0.464498
299299 1.08405 0.0626923
300300 −3.58651 −0.207067
301301 −10.3456 −0.596313
302302 −6.32492 −0.363958
303303 8.28797 0.476132
304304 0 0
305305 −30.7098 −1.75844
306306 0 0
307307 −4.48963 −0.256237 −0.128118 0.991759i 0.540894π-0.540894\pi
−0.128118 + 0.991759i 0.540894π0.540894\pi
308308 −23.4504 −1.33621
309309 14.6521 0.833528
310310 13.4795 0.765582
311311 0.759136 0.0430466 0.0215233 0.999768i 0.493148π-0.493148\pi
0.0215233 + 0.999768i 0.493148π0.493148\pi
312312 0.302491 0.0171252
313313 11.4320 0.646173 0.323086 0.946370i 0.395280π-0.395280\pi
0.323086 + 0.946370i 0.395280π0.395280\pi
314314 −8.04090 −0.453774
315315 9.81681 0.553115
316316 −10.9216 −0.614388
317317 −11.6151 −0.652372 −0.326186 0.945306i 0.605764π-0.605764\pi
−0.326186 + 0.945306i 0.605764π0.605764\pi
318318 −4.58651 −0.257199
319319 20.4033 1.14237
320320 3.16246 0.176787
321321 −16.6913 −0.931617
322322 15.8168 0.881436
323323 0 0
324324 −1.67282 −0.0929347
325325 0.308705 0.0171239
326326 −2.63983 −0.146207
327327 7.83528 0.433292
328328 11.2303 0.620090
329329 22.0369 1.21494
330330 −5.83528 −0.321222
331331 −11.4712 −0.630512 −0.315256 0.949007i 0.602090π-0.602090\pi
−0.315256 + 0.949007i 0.602090π0.602090\pi
332332 3.82738 0.210055
333333 −1.00000 −0.0547997
334334 6.98983 0.382467
335335 −14.3928 −0.786360
336336 −7.87448 −0.429588
337337 7.56804 0.412257 0.206129 0.978525i 0.433913π-0.433913\pi
0.206129 + 0.978525i 0.433913π0.433913\pi
338338 7.42405 0.403815
339339 −6.38485 −0.346777
340340 0 0
341341 −33.6521 −1.82236
342342 0 0
343343 1.87448 0.101213
344344 5.91764 0.319058
345345 −20.1233 −1.08340
346346 −8.61289 −0.463032
347347 21.8168 1.17119 0.585594 0.810605i 0.300861π-0.300861\pi
0.585594 + 0.810605i 0.300861π0.300861\pi
348348 8.94233 0.479359
349349 −4.54731 −0.243412 −0.121706 0.992566i 0.538836π-0.538836\pi
−0.121706 + 0.992566i 0.538836π0.538836\pi
350350 4.50415 0.240757
351351 0.143987 0.00768543
352352 20.7177 1.10426
353353 −8.99774 −0.478901 −0.239451 0.970909i 0.576967π-0.576967\pi
−0.239451 + 0.970909i 0.576967π0.576967\pi
354354 −2.18319 −0.116035
355355 36.4403 1.93405
356356 14.5081 0.768928
357357 0 0
358358 8.67282 0.458373
359359 12.9793 0.685020 0.342510 0.939514i 0.388723π-0.388723\pi
0.342510 + 0.939514i 0.388723π0.388723\pi
360360 −5.61515 −0.295944
361361 0 0
362362 −6.97927 −0.366822
363363 3.56804 0.187274
364364 0.884651 0.0463683
365365 0.923855 0.0483568
366366 −6.57199 −0.343524
367367 −4.04711 −0.211257 −0.105629 0.994406i 0.533685π-0.533685\pi
−0.105629 + 0.994406i 0.533685π0.533685\pi
368368 16.1417 0.841446
369369 5.34565 0.278283
370370 −1.52884 −0.0794805
371371 −29.4504 −1.52899
372372 −14.7490 −0.764698
373373 3.79834 0.196671 0.0983353 0.995153i 0.468648π-0.468648\pi
0.0983353 + 0.995153i 0.468648π0.468648\pi
374374 0 0
375375 7.63362 0.394198
376376 −12.6050 −0.650052
377377 −0.769701 −0.0396416
378378 2.10083 0.108055
379379 4.89522 0.251450 0.125725 0.992065i 0.459874π-0.459874\pi
0.125725 + 0.992065i 0.459874π0.459874\pi
380380 0 0
381381 2.65435 0.135987
382382 −3.11761 −0.159511
383383 34.1417 1.74456 0.872280 0.489006i 0.162640π-0.162640\pi
0.872280 + 0.489006i 0.162640π0.162640\pi
384384 11.5328 0.588530
385385 −37.4689 −1.90959
386386 0.291926 0.0148586
387387 2.81681 0.143187
388388 9.89256 0.502218
389389 26.8824 1.36299 0.681496 0.731822i 0.261330π-0.261330\pi
0.681496 + 0.731822i 0.261330π0.261330\pi
390390 0.220132 0.0111468
391391 0 0
392392 13.6336 0.688602
393393 −11.3456 −0.572312
394394 −13.1334 −0.661652
395395 −17.4504 −0.878026
396396 6.38485 0.320851
397397 25.2386 1.26669 0.633345 0.773870i 0.281682π-0.281682\pi
0.633345 + 0.773870i 0.281682π0.281682\pi
398398 0.0717940 0.00359871
399399 0 0
400400 4.59668 0.229834
401401 −3.32718 −0.166151 −0.0830756 0.996543i 0.526474π-0.526474\pi
−0.0830756 + 0.996543i 0.526474π0.526474\pi
402402 −3.08010 −0.153621
403403 1.26950 0.0632384
404404 −13.8643 −0.689776
405405 −2.67282 −0.132814
406406 −11.2303 −0.557350
407407 3.81681 0.189192
408408 0 0
409409 34.1233 1.68729 0.843643 0.536904i 0.180406π-0.180406\pi
0.843643 + 0.536904i 0.180406π0.180406\pi
410410 8.17262 0.403617
411411 −1.63362 −0.0805806
412412 −24.5104 −1.20754
413413 −14.0185 −0.689804
414414 −4.30644 −0.211650
415415 6.11535 0.300191
416416 −0.781560 −0.0383191
417417 7.50811 0.367673
418418 0 0
419419 −9.16246 −0.447615 −0.223808 0.974633i 0.571849π-0.571849\pi
−0.223808 + 0.974633i 0.571849π0.571849\pi
420420 −16.4218 −0.801301
421421 −15.8353 −0.771764 −0.385882 0.922548i 0.626103π-0.626103\pi
−0.385882 + 0.922548i 0.626103π0.626103\pi
422422 −14.2162 −0.692033
423423 −6.00000 −0.291730
424424 16.8454 0.818087
425425 0 0
426426 7.79834 0.377831
427427 −42.1994 −2.04217
428428 27.9216 1.34964
429429 −0.549569 −0.0265335
430430 4.30644 0.207675
431431 −9.26724 −0.446387 −0.223194 0.974774i 0.571648π-0.571648\pi
−0.223194 + 0.974774i 0.571648π0.571648\pi
432432 2.14399 0.103153
433433 −19.8145 −0.952226 −0.476113 0.879384i 0.657955π-0.657955\pi
−0.476113 + 0.879384i 0.657955π0.657955\pi
434434 18.5226 0.889114
435435 14.2880 0.685056
436436 −13.1070 −0.627714
437437 0 0
438438 0.197708 0.00944685
439439 6.90312 0.329468 0.164734 0.986338i 0.447323π-0.447323\pi
0.164734 + 0.986338i 0.447323π0.447323\pi
440440 21.4320 1.02173
441441 6.48963 0.309030
442442 0 0
443443 −19.6336 −0.932821 −0.466411 0.884568i 0.654453π-0.654453\pi
−0.466411 + 0.884568i 0.654453π0.654453\pi
444444 1.67282 0.0793887
445445 23.1809 1.09888
446446 13.6112 0.644509
447447 14.0185 0.663051
448448 4.34565 0.205313
449449 29.0162 1.36936 0.684680 0.728844i 0.259942π-0.259942\pi
0.684680 + 0.728844i 0.259942π0.259942\pi
450450 −1.22635 −0.0578105
451451 −20.4033 −0.960755
452452 10.6807 0.502379
453453 11.0577 0.519535
454454 −5.61515 −0.263532
455455 1.41349 0.0662654
456456 0 0
457457 32.5473 1.52250 0.761249 0.648459i 0.224586π-0.224586\pi
0.761249 + 0.648459i 0.224586π0.224586\pi
458458 −0.0823593 −0.00384840
459459 0 0
460460 33.6627 1.56953
461461 −9.65209 −0.449543 −0.224771 0.974412i 0.572164π-0.572164\pi
−0.224771 + 0.974412i 0.572164π0.572164\pi
462462 −8.01847 −0.373053
463463 −31.0554 −1.44327 −0.721634 0.692275i 0.756608π-0.756608\pi
−0.721634 + 0.692275i 0.756608π0.756608\pi
464464 −11.4610 −0.532063
465465 −23.5658 −1.09284
466466 −6.04937 −0.280232
467467 8.61289 0.398557 0.199278 0.979943i 0.436140π-0.436140\pi
0.199278 + 0.979943i 0.436140π0.436140\pi
468468 −0.240864 −0.0111339
469469 −19.7776 −0.913245
470470 −9.17302 −0.423120
471471 14.0577 0.647743
472472 8.01847 0.369080
473473 −10.7512 −0.494342
474474 −3.73445 −0.171529
475475 0 0
476476 0 0
477477 8.01847 0.367141
478478 5.61515 0.256831
479479 17.4610 0.797813 0.398907 0.916992i 0.369390π-0.369390\pi
0.398907 + 0.916992i 0.369390π0.369390\pi
480480 14.5081 0.662201
481481 −0.143987 −0.00656522
482482 −1.11100 −0.0506045
483483 −27.6521 −1.25821
484484 −5.96870 −0.271305
485485 15.8062 0.717725
486486 −0.571993 −0.0259461
487487 −11.6336 −0.527170 −0.263585 0.964636i 0.584905π-0.584905\pi
−0.263585 + 0.964636i 0.584905π0.584905\pi
488488 24.1378 1.09267
489489 4.61515 0.208704
490490 9.92159 0.448212
491491 −24.3249 −1.09777 −0.548884 0.835899i 0.684947π-0.684947\pi
−0.548884 + 0.835899i 0.684947π0.684947\pi
492492 −8.94233 −0.403151
493493 0 0
494494 0 0
495495 10.2017 0.458531
496496 18.9031 0.848775
497497 50.0739 2.24612
498498 1.30871 0.0586445
499499 38.1131 1.70618 0.853088 0.521767i 0.174727π-0.174727\pi
0.853088 + 0.521767i 0.174727π0.174727\pi
500500 −12.7697 −0.571078
501501 −12.2201 −0.545955
502502 −7.79834 −0.348057
503503 4.36638 0.194687 0.0973436 0.995251i 0.468965π-0.468965\pi
0.0973436 + 0.995251i 0.468965π0.468965\pi
504504 −7.71598 −0.343697
505505 −22.1523 −0.985764
506506 16.4369 0.730708
507507 −12.9793 −0.576430
508508 −4.44026 −0.197005
509509 −15.7120 −0.696423 −0.348212 0.937416i 0.613211π-0.613211\pi
−0.348212 + 0.937416i 0.613211π0.613211\pi
510510 0 0
511511 1.26950 0.0561595
512512 −20.6459 −0.912428
513513 0 0
514514 7.20392 0.317751
515515 −39.1625 −1.72570
516516 −4.71203 −0.207435
517517 22.9009 1.00718
518518 −2.10083 −0.0923052
519519 15.0577 0.660959
520520 −0.808506 −0.0354553
521521 33.4425 1.46514 0.732572 0.680690i 0.238320π-0.238320\pi
0.732572 + 0.680690i 0.238320π0.238320\pi
522522 3.05767 0.133831
523523 −29.4218 −1.28653 −0.643263 0.765646i 0.722420π-0.722420\pi
−0.643263 + 0.765646i 0.722420π0.722420\pi
524524 18.9793 0.829113
525525 −7.87448 −0.343671
526526 0.934420 0.0407426
527527 0 0
528528 −8.18319 −0.356128
529529 33.6834 1.46450
530530 12.2589 0.532494
531531 3.81681 0.165635
532532 0 0
533533 0.769701 0.0333395
534534 4.96080 0.214675
535535 44.6129 1.92878
536536 11.3127 0.488632
537537 −15.1625 −0.654308
538538 12.3849 0.533949
539539 −24.7697 −1.06691
540540 4.47116 0.192408
541541 26.1730 1.12527 0.562633 0.826707i 0.309788π-0.309788\pi
0.562633 + 0.826707i 0.309788π0.309788\pi
542542 12.3294 0.529595
543543 12.2017 0.523623
544544 0 0
545545 −20.9423 −0.897071
546546 0.302491 0.0129454
547547 21.9114 0.936865 0.468432 0.883499i 0.344819π-0.344819\pi
0.468432 + 0.883499i 0.344819π0.344819\pi
548548 2.73276 0.116738
549549 11.4896 0.490366
550550 4.68073 0.199587
551551 0 0
552552 15.8168 0.673208
553553 −23.9793 −1.01970
554554 −4.36186 −0.185318
555555 2.67282 0.113455
556556 −12.5597 −0.532651
557557 34.0369 1.44219 0.721096 0.692835i 0.243639π-0.243639\pi
0.721096 + 0.692835i 0.243639π0.243639\pi
558558 −5.04316 −0.213494
559559 0.405583 0.0171543
560560 21.0471 0.889403
561561 0 0
562562 0.968703 0.0408622
563563 11.5552 0.486994 0.243497 0.969902i 0.421705π-0.421705\pi
0.243497 + 0.969902i 0.421705π0.421705\pi
564564 10.0369 0.422632
565565 17.0656 0.717954
566566 −5.88465 −0.247350
567567 −3.67282 −0.154244
568568 −28.6419 −1.20179
569569 39.7075 1.66463 0.832313 0.554307i 0.187016π-0.187016\pi
0.832313 + 0.554307i 0.187016π0.187016\pi
570570 0 0
571571 14.6521 0.613171 0.306585 0.951843i 0.400813π-0.400813\pi
0.306585 + 0.951843i 0.400813π0.400813\pi
572572 0.919333 0.0384392
573573 5.45043 0.227695
574574 11.2303 0.468744
575575 16.1417 0.673156
576576 −1.18319 −0.0492996
577577 20.8145 0.866521 0.433261 0.901269i 0.357363π-0.357363\pi
0.433261 + 0.901269i 0.357363π0.357363\pi
578578 9.72389 0.404460
579579 −0.510366 −0.0212101
580580 −23.9013 −0.992446
581581 8.40332 0.348629
582582 3.38259 0.140213
583583 −30.6050 −1.26753
584584 −0.726147 −0.0300482
585585 −0.384851 −0.0159116
586586 −6.92990 −0.286271
587587 19.6442 0.810802 0.405401 0.914139i 0.367132π-0.367132\pi
0.405401 + 0.914139i 0.367132π0.367132\pi
588588 −10.8560 −0.447694
589589 0 0
590590 5.83528 0.240235
591591 22.9608 0.944481
592592 −2.14399 −0.0881173
593593 21.6521 0.889145 0.444572 0.895743i 0.353356π-0.353356\pi
0.444572 + 0.895743i 0.353356π0.353356\pi
594594 2.18319 0.0895774
595595 0 0
596596 −23.4504 −0.960567
597597 −0.125515 −0.00513700
598598 −0.620070 −0.0253565
599599 −11.7799 −0.481312 −0.240656 0.970610i 0.577363π-0.577363\pi
−0.240656 + 0.970610i 0.577363π0.577363\pi
600600 4.50415 0.183881
601601 −11.4112 −0.465474 −0.232737 0.972540i 0.574768π-0.574768\pi
−0.232737 + 0.972540i 0.574768π0.574768\pi
602602 5.91764 0.241185
603603 5.38485 0.219288
604604 −18.4975 −0.752654
605605 −9.53674 −0.387724
606606 −4.74066 −0.192576
607607 −1.10478 −0.0448418 −0.0224209 0.999749i 0.507137π-0.507137\pi
−0.0224209 + 0.999749i 0.507137π0.507137\pi
608608 0 0
609609 19.6336 0.795594
610610 17.5658 0.711218
611611 −0.863919 −0.0349504
612612 0 0
613613 4.77761 0.192966 0.0964829 0.995335i 0.469241π-0.469241\pi
0.0964829 + 0.995335i 0.469241π0.469241\pi
614614 2.56804 0.103638
615615 −14.2880 −0.576147
616616 29.4504 1.18659
617617 37.4795 1.50887 0.754433 0.656377i 0.227912π-0.227912\pi
0.754433 + 0.656377i 0.227912π0.227912\pi
618618 −8.38090 −0.337129
619619 −0.615149 −0.0247249 −0.0123625 0.999924i 0.503935π-0.503935\pi
−0.0123625 + 0.999924i 0.503935π0.503935\pi
620620 39.4214 1.58320
621621 7.52884 0.302122
622622 −0.434221 −0.0174107
623623 31.8538 1.27619
624624 0.308705 0.0123581
625625 −31.1233 −1.24493
626626 −6.53900 −0.261351
627627 0 0
628628 −23.5160 −0.938391
629629 0 0
630630 −5.61515 −0.223713
631631 21.3064 0.848196 0.424098 0.905616i 0.360591π-0.360591\pi
0.424098 + 0.905616i 0.360591π0.360591\pi
632632 13.7160 0.545592
633633 24.8538 0.987848
634634 6.64379 0.263858
635635 −7.09462 −0.281541
636636 −13.4135 −0.531879
637637 0.934420 0.0370231
638638 −11.6706 −0.462042
639639 −13.6336 −0.539338
640640 −30.8251 −1.21847
641641 39.9216 1.57681 0.788404 0.615158i 0.210908π-0.210908\pi
0.788404 + 0.615158i 0.210908π0.210908\pi
642642 9.54731 0.376802
643643 −37.3849 −1.47431 −0.737157 0.675721i 0.763832π-0.763832\pi
−0.737157 + 0.675721i 0.763832π0.763832\pi
644644 46.2571 1.82278
645645 −7.52884 −0.296448
646646 0 0
647647 16.0369 0.630477 0.315239 0.949012i 0.397915π-0.397915\pi
0.315239 + 0.949012i 0.397915π0.397915\pi
648648 2.10083 0.0825284
649649 −14.5680 −0.571846
650650 −0.176577 −0.00692593
651651 −32.3826 −1.26917
652652 −7.72033 −0.302352
653653 13.4241 0.525324 0.262662 0.964888i 0.415400π-0.415400\pi
0.262662 + 0.964888i 0.415400π0.415400\pi
654654 −4.48173 −0.175249
655655 30.3249 1.18489
656656 11.4610 0.447477
657657 −0.345647 −0.0134850
658658 −12.6050 −0.491393
659659 −18.5450 −0.722412 −0.361206 0.932486i 0.617635π-0.617635\pi
−0.361206 + 0.932486i 0.617635π0.617635\pi
660660 −17.0656 −0.664277
661661 6.57595 0.255775 0.127887 0.991789i 0.459180π-0.459180\pi
0.127887 + 0.991789i 0.459180π0.459180\pi
662662 6.56143 0.255017
663663 0 0
664664 −4.80664 −0.186534
665665 0 0
666666 0.571993 0.0221643
667667 −40.2465 −1.55835
668668 20.4421 0.790930
669669 −23.7961 −0.920010
670670 8.23256 0.318052
671671 −43.8538 −1.69296
672672 19.9361 0.769052
673673 −39.2386 −1.51254 −0.756268 0.654261i 0.772980π-0.772980\pi
−0.756268 + 0.654261i 0.772980π0.772980\pi
674674 −4.32887 −0.166742
675675 2.14399 0.0825221
676676 21.7120 0.835078
677677 −25.8432 −0.993234 −0.496617 0.867970i 0.665425π-0.665425\pi
−0.496617 + 0.867970i 0.665425π0.665425\pi
678678 3.65209 0.140258
679679 21.7199 0.833535
680680 0 0
681681 9.81681 0.376181
682682 19.2488 0.737073
683683 42.9898 1.64496 0.822480 0.568794i 0.192590π-0.192590\pi
0.822480 + 0.568794i 0.192590π0.192590\pi
684684 0 0
685685 4.36638 0.166831
686686 −1.07219 −0.0409365
687687 0.143987 0.00549343
688688 6.03920 0.230242
689689 1.15455 0.0439849
690690 11.5104 0.438192
691691 −48.4033 −1.84135 −0.920675 0.390331i 0.872361π-0.872361\pi
−0.920675 + 0.390331i 0.872361π0.872361\pi
692692 −25.1888 −0.957536
693693 14.0185 0.532518
694694 −12.4791 −0.473699
695695 −20.0678 −0.761217
696696 −11.2303 −0.425683
697697 0 0
698698 2.60103 0.0984504
699699 10.5759 0.400019
700700 13.1726 0.497878
701701 −3.21183 −0.121309 −0.0606545 0.998159i 0.519319π-0.519319\pi
−0.0606545 + 0.998159i 0.519319π0.519319\pi
702702 −0.0823593 −0.00310845
703703 0 0
704704 4.51601 0.170204
705705 16.0369 0.603986
706706 5.14665 0.193697
707707 −30.4403 −1.14482
708708 −6.38485 −0.239957
709709 22.0656 0.828690 0.414345 0.910120i 0.364011π-0.364011\pi
0.414345 + 0.910120i 0.364011π0.364011\pi
710710 −20.8436 −0.782246
711711 6.52884 0.244851
712712 −18.2201 −0.682828
713713 66.3803 2.48596
714714 0 0
715715 1.46890 0.0549338
716716 25.3641 0.947902
717717 −9.81681 −0.366615
718718 −7.42405 −0.277063
719719 17.6600 0.658607 0.329303 0.944224i 0.393186π-0.393186\pi
0.329303 + 0.944224i 0.393186π0.393186\pi
720720 −5.73050 −0.213563
721721 −53.8145 −2.00416
722722 0 0
723723 1.94233 0.0722359
724724 −20.4112 −0.758577
725725 −11.4610 −0.425651
726726 −2.04090 −0.0757447
727727 −40.3932 −1.49810 −0.749050 0.662514i 0.769490π-0.769490\pi
−0.749050 + 0.662514i 0.769490π0.769490\pi
728728 −1.11100 −0.0411763
729729 1.00000 0.0370370
730730 −0.528439 −0.0195584
731731 0 0
732732 −19.2201 −0.710397
733733 −17.9137 −0.661657 −0.330829 0.943691i 0.607328π-0.607328\pi
−0.330829 + 0.943691i 0.607328π0.607328\pi
734734 2.31492 0.0854452
735735 −17.3456 −0.639804
736736 −40.8666 −1.50636
737737 −20.5530 −0.757078
738738 −3.05767 −0.112555
739739 −16.9770 −0.624509 −0.312255 0.949998i 0.601084π-0.601084\pi
−0.312255 + 0.949998i 0.601084π0.601084\pi
740740 −4.47116 −0.164363
741741 0 0
742742 16.8454 0.618416
743743 −50.7177 −1.86065 −0.930325 0.366735i 0.880476π-0.880476\pi
−0.930325 + 0.366735i 0.880476π0.880476\pi
744744 18.5226 0.679072
745745 −37.4689 −1.37275
746746 −2.17262 −0.0795454
747747 −2.28797 −0.0837126
748748 0 0
749749 61.3042 2.24001
750750 −4.36638 −0.159438
751751 −25.5944 −0.933954 −0.466977 0.884270i 0.654657π-0.654657\pi
−0.466977 + 0.884270i 0.654657π0.654657\pi
752752 −12.8639 −0.469099
753753 13.6336 0.496837
754754 0.440264 0.0160335
755755 −29.5552 −1.07562
756756 6.14399 0.223455
757757 45.7361 1.66231 0.831154 0.556042i 0.187681π-0.187681\pi
0.831154 + 0.556042i 0.187681π0.187681\pi
758758 −2.80003 −0.101702
759759 −28.7361 −1.04306
760760 0 0
761761 −44.1338 −1.59985 −0.799925 0.600100i 0.795127π-0.795127\pi
−0.799925 + 0.600100i 0.795127π0.795127\pi
762762 −1.51827 −0.0550012
763763 −28.7776 −1.04182
764764 −9.11761 −0.329864
765765 0 0
766766 −19.5288 −0.705606
767767 0.549569 0.0198438
768768 −4.23030 −0.152648
769769 −44.0946 −1.59009 −0.795046 0.606549i 0.792553π-0.792553\pi
−0.795046 + 0.606549i 0.792553π0.792553\pi
770770 21.4320 0.772354
771771 −12.5944 −0.453577
772772 0.853752 0.0307272
773773 4.90086 0.176272 0.0881359 0.996108i 0.471909π-0.471909\pi
0.0881359 + 0.996108i 0.471909π0.471909\pi
774774 −1.61120 −0.0579133
775775 18.9031 0.679020
776776 −12.4237 −0.445983
777777 3.67282 0.131762
778778 −15.3765 −0.551276
779779 0 0
780780 0.643787 0.0230513
781781 52.0369 1.86203
782782 0 0
783783 −5.34565 −0.191038
784784 13.9137 0.496917
785785 −37.5737 −1.34106
786786 6.48963 0.231478
787787 35.0554 1.24959 0.624795 0.780789i 0.285182π-0.285182\pi
0.624795 + 0.780789i 0.285182π0.285182\pi
788788 −38.4094 −1.36828
789789 −1.63362 −0.0581584
790790 9.98153 0.355127
791791 23.4504 0.833801
792792 −8.01847 −0.284924
793793 1.65435 0.0587478
794794 −14.4363 −0.512326
795795 −21.4320 −0.760113
796796 0.209965 0.00744202
797797 −5.67056 −0.200862 −0.100431 0.994944i 0.532022π-0.532022\pi
−0.100431 + 0.994944i 0.532022π0.532022\pi
798798 0 0
799799 0 0
800800 −11.6376 −0.411450
801801 −8.67282 −0.306439
802802 1.90312 0.0672016
803803 1.31927 0.0465560
804804 −9.00791 −0.317684
805805 73.9092 2.60496
806806 −0.726147 −0.0255774
807807 −21.6521 −0.762190
808808 17.4116 0.612539
809809 10.6359 0.373938 0.186969 0.982366i 0.440134π-0.440134\pi
0.186969 + 0.982366i 0.440134π0.440134\pi
810810 1.52884 0.0537179
811811 27.3042 0.958780 0.479390 0.877602i 0.340858π-0.340858\pi
0.479390 + 0.877602i 0.340858π0.340858\pi
812812 −32.8436 −1.15258
813813 −21.5552 −0.755974
814814 −2.18319 −0.0765208
815815 −12.3355 −0.432093
816816 0 0
817817 0 0
818818 −19.5183 −0.682440
819819 −0.528837 −0.0184791
820820 23.9013 0.834668
821821 21.1730 0.738944 0.369472 0.929242i 0.379539π-0.379539\pi
0.369472 + 0.929242i 0.379539π0.379539\pi
822822 0.934420 0.0325916
823823 46.7282 1.62884 0.814422 0.580273i 0.197054π-0.197054\pi
0.814422 + 0.580273i 0.197054π0.197054\pi
824824 30.7816 1.07233
825825 −8.18319 −0.284902
826826 8.01847 0.278998
827827 −5.67508 −0.197342 −0.0986710 0.995120i 0.531459π-0.531459\pi
−0.0986710 + 0.995120i 0.531459π0.531459\pi
828828 −12.5944 −0.437686
829829 −22.3377 −0.775822 −0.387911 0.921697i 0.626803π-0.626803\pi
−0.387911 + 0.921697i 0.626803π0.626803\pi
830830 −3.49794 −0.121415
831831 7.62571 0.264533
832832 −0.170363 −0.00590629
833833 0 0
834834 −4.29459 −0.148709
835835 32.6623 1.13032
836836 0 0
837837 8.81681 0.304754
838838 5.24086 0.181043
839839 −13.0841 −0.451712 −0.225856 0.974161i 0.572518π-0.572518\pi
−0.225856 + 0.974161i 0.572518π0.572518\pi
840840 20.6235 0.711577
841841 −0.424054 −0.0146225
842842 9.05767 0.312148
843843 −1.69356 −0.0583292
844844 −41.5759 −1.43110
845845 34.6913 1.19342
846846 3.43196 0.117993
847847 −13.1048 −0.450286
848848 17.1915 0.590358
849849 10.2880 0.353082
850850 0 0
851851 −7.52884 −0.258085
852852 22.8066 0.781343
853853 40.2258 1.37730 0.688652 0.725092i 0.258203π-0.258203\pi
0.688652 + 0.725092i 0.258203π0.258203\pi
854854 24.1378 0.825978
855855 0 0
856856 −35.0656 −1.19852
857857 −6.00000 −0.204956 −0.102478 0.994735i 0.532677π-0.532677\pi
−0.102478 + 0.994735i 0.532677π0.532677\pi
858858 0.314350 0.0107317
859859 −21.8824 −0.746618 −0.373309 0.927707i 0.621777π-0.621777\pi
−0.373309 + 0.927707i 0.621777π0.621777\pi
860860 12.5944 0.429466
861861 −19.6336 −0.669112
862862 5.30080 0.180546
863863 −10.5759 −0.360009 −0.180005 0.983666i 0.557611π-0.557611\pi
−0.180005 + 0.983666i 0.557611π0.557611\pi
864864 −5.42801 −0.184665
865865 −40.2465 −1.36842
866866 11.3338 0.385138
867867 −17.0000 −0.577350
868868 54.1704 1.83866
869869 −24.9193 −0.845330
870870 −8.17262 −0.277078
871871 0.775346 0.0262716
872872 16.4606 0.557426
873873 −5.91369 −0.200148
874874 0 0
875875 −28.0369 −0.947822
876876 0.578207 0.0195358
877877 −43.5345 −1.47006 −0.735028 0.678037i 0.762831π-0.762831\pi
−0.735028 + 0.678037i 0.762831π0.762831\pi
878878 −3.94854 −0.133257
879879 12.1153 0.408641
880880 21.8722 0.737313
881881 4.96080 0.167133 0.0835667 0.996502i 0.473369π-0.473369\pi
0.0835667 + 0.996502i 0.473369π0.473369\pi
882882 −3.71203 −0.124990
883883 −13.0106 −0.437840 −0.218920 0.975743i 0.570253π-0.570253\pi
−0.218920 + 0.975743i 0.570253π0.570253\pi
884884 0 0
885885 −10.2017 −0.342925
886886 11.2303 0.377289
887887 34.1417 1.14637 0.573183 0.819427i 0.305708π-0.305708\pi
0.573183 + 0.819427i 0.305708π0.305708\pi
888888 −2.10083 −0.0704993
889889 −9.74897 −0.326970
890890 −13.2593 −0.444454
891891 −3.81681 −0.127868
892892 39.8066 1.33283
893893 0 0
894894 −8.01847 −0.268178
895895 40.5266 1.35465
896896 −42.3579 −1.41508
897897 1.08405 0.0361954
898898 −16.5971 −0.553852
899899 −47.1316 −1.57193
900900 −3.58651 −0.119550
901901 0 0
902902 11.6706 0.388587
903903 −10.3456 −0.344282
904904 −13.4135 −0.446126
905905 −32.6129 −1.08409
906906 −6.32492 −0.210131
907907 47.4979 1.57714 0.788572 0.614943i 0.210821π-0.210821\pi
0.788572 + 0.614943i 0.210821π0.210821\pi
908908 −16.4218 −0.544976
909909 8.28797 0.274895
910910 −0.808506 −0.0268017
911911 −46.1523 −1.52909 −0.764547 0.644568i 0.777037π-0.777037\pi
−0.764547 + 0.644568i 0.777037π0.777037\pi
912912 0 0
913913 8.73276 0.289012
914914 −18.6168 −0.615790
915915 −30.7098 −1.01523
916916 −0.240864 −0.00795837
917917 41.6706 1.37608
918918 0 0
919919 −29.5160 −0.973643 −0.486822 0.873501i 0.661844π-0.661844\pi
−0.486822 + 0.873501i 0.661844π0.661844\pi
920920 −42.2755 −1.39378
921921 −4.48963 −0.147938
922922 5.52093 0.181822
923923 −1.96306 −0.0646148
924924 −23.4504 −0.771463
925925 −2.14399 −0.0704938
926926 17.7635 0.583744
927927 14.6521 0.481238
928928 29.0162 0.952504
929929 −39.4425 −1.29407 −0.647034 0.762461i 0.723991π-0.723991\pi
−0.647034 + 0.762461i 0.723991π0.723991\pi
930930 13.4795 0.442009
931931 0 0
932932 −17.6917 −0.579511
933933 0.759136 0.0248530
934934 −4.92651 −0.161200
935935 0 0
936936 0.302491 0.00988724
937937 27.7361 0.906100 0.453050 0.891485i 0.350336π-0.350336\pi
0.453050 + 0.891485i 0.350336π0.350336\pi
938938 11.3127 0.369371
939939 11.4320 0.373068
940940 −26.8270 −0.875000
941941 −16.2465 −0.529621 −0.264811 0.964300i 0.585309π-0.585309\pi
−0.264811 + 0.964300i 0.585309π0.585309\pi
942942 −8.04090 −0.261987
943943 40.2465 1.31061
944944 8.18319 0.266340
945945 9.81681 0.319341
946946 6.14963 0.199942
947947 −15.9216 −0.517382 −0.258691 0.965960i 0.583291π-0.583291\pi
−0.258691 + 0.965960i 0.583291π0.583291\pi
948948 −10.9216 −0.354717
949949 −0.0497686 −0.00161556
950950 0 0
951951 −11.6151 −0.376647
952952 0 0
953953 35.9401 1.16421 0.582106 0.813113i 0.302229π-0.302229\pi
0.582106 + 0.813113i 0.302229π0.302229\pi
954954 −4.58651 −0.148494
955955 −14.5680 −0.471411
956956 16.4218 0.531119
957957 20.4033 0.659546
958958 −9.98757 −0.322684
959959 6.00000 0.193750
960960 3.16246 0.102068
961961 46.7361 1.50762
962962 0.0823593 0.00265537
963963 −16.6913 −0.537869
964964 −3.24917 −0.104649
965965 1.36412 0.0439125
966966 15.8168 0.508898
967967 2.60724 0.0838433 0.0419217 0.999121i 0.486652π-0.486652\pi
0.0419217 + 0.999121i 0.486652π0.486652\pi
968968 7.49585 0.240926
969969 0 0
970970 −9.04107 −0.290291
971971 16.1312 0.517674 0.258837 0.965921i 0.416661π-0.416661\pi
0.258837 + 0.965921i 0.416661π0.416661\pi
972972 −1.67282 −0.0536558
973973 −27.5759 −0.884044
974974 6.65435 0.213219
975975 0.308705 0.00988648
976976 24.6336 0.788503
977977 −3.17302 −0.101514 −0.0507570 0.998711i 0.516163π-0.516163\pi
−0.0507570 + 0.998711i 0.516163π0.516163\pi
978978 −2.63983 −0.0844126
979979 33.1025 1.05796
980980 29.0162 0.926889
981981 7.83528 0.250161
982982 13.9137 0.444004
983983 20.8330 0.664470 0.332235 0.943197i 0.392197π-0.392197\pi
0.332235 + 0.943197i 0.392197π0.392197\pi
984984 11.2303 0.358009
985985 −61.3702 −1.95542
986986 0 0
987987 22.0369 0.701444
988988 0 0
989989 21.2073 0.674353
990990 −5.83528 −0.185457
991991 −45.8330 −1.45593 −0.727967 0.685612i 0.759535π-0.759535\pi
−0.727967 + 0.685612i 0.759535π0.759535\pi
992992 −47.8577 −1.51948
993993 −11.4712 −0.364026
994994 −28.6419 −0.908467
995995 0.335481 0.0106355
996996 3.82738 0.121275
997997 54.6336 1.73026 0.865132 0.501544i 0.167235π-0.167235\pi
0.865132 + 0.501544i 0.167235π0.167235\pi
998998 −21.8004 −0.690081
999999 −1.00000 −0.0316386
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1083.2.a.l.1.2 3
3.2 odd 2 3249.2.a.y.1.2 3
19.7 even 3 57.2.e.b.49.2 yes 6
19.11 even 3 57.2.e.b.7.2 6
19.18 odd 2 1083.2.a.o.1.2 3
57.11 odd 6 171.2.f.b.64.2 6
57.26 odd 6 171.2.f.b.163.2 6
57.56 even 2 3249.2.a.t.1.2 3
76.7 odd 6 912.2.q.l.49.3 6
76.11 odd 6 912.2.q.l.577.3 6
228.11 even 6 2736.2.s.z.577.1 6
228.83 even 6 2736.2.s.z.1873.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.2.e.b.7.2 6 19.11 even 3
57.2.e.b.49.2 yes 6 19.7 even 3
171.2.f.b.64.2 6 57.11 odd 6
171.2.f.b.163.2 6 57.26 odd 6
912.2.q.l.49.3 6 76.7 odd 6
912.2.q.l.577.3 6 76.11 odd 6
1083.2.a.l.1.2 3 1.1 even 1 trivial
1083.2.a.o.1.2 3 19.18 odd 2
2736.2.s.z.577.1 6 228.11 even 6
2736.2.s.z.1873.1 6 228.83 even 6
3249.2.a.t.1.2 3 57.56 even 2
3249.2.a.y.1.2 3 3.2 odd 2