Properties

Label 1083.2.a.l.1.2
Level $1083$
Weight $2$
Character 1083.1
Self dual yes
Analytic conductor $8.648$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1083,2,Mod(1,1083)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1083, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1083.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1083 = 3 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1083.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.64779853890\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.571993\) of defining polynomial
Character \(\chi\) \(=\) 1083.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.571993 q^{2} +1.00000 q^{3} -1.67282 q^{4} -2.67282 q^{5} -0.571993 q^{6} -3.67282 q^{7} +2.10083 q^{8} +1.00000 q^{9} +1.52884 q^{10} -3.81681 q^{11} -1.67282 q^{12} +0.143987 q^{13} +2.10083 q^{14} -2.67282 q^{15} +2.14399 q^{16} -0.571993 q^{18} +4.47116 q^{20} -3.67282 q^{21} +2.18319 q^{22} +7.52884 q^{23} +2.10083 q^{24} +2.14399 q^{25} -0.0823593 q^{26} +1.00000 q^{27} +6.14399 q^{28} -5.34565 q^{29} +1.52884 q^{30} +8.81681 q^{31} -5.42801 q^{32} -3.81681 q^{33} +9.81681 q^{35} -1.67282 q^{36} -1.00000 q^{37} +0.143987 q^{39} -5.61515 q^{40} +5.34565 q^{41} +2.10083 q^{42} +2.81681 q^{43} +6.38485 q^{44} -2.67282 q^{45} -4.30644 q^{46} -6.00000 q^{47} +2.14399 q^{48} +6.48963 q^{49} -1.22635 q^{50} -0.240864 q^{52} +8.01847 q^{53} -0.571993 q^{54} +10.2017 q^{55} -7.71598 q^{56} +3.05767 q^{58} +3.81681 q^{59} +4.47116 q^{60} +11.4896 q^{61} -5.04316 q^{62} -3.67282 q^{63} -1.18319 q^{64} -0.384851 q^{65} +2.18319 q^{66} +5.38485 q^{67} +7.52884 q^{69} -5.61515 q^{70} -13.6336 q^{71} +2.10083 q^{72} -0.345647 q^{73} +0.571993 q^{74} +2.14399 q^{75} +14.0185 q^{77} -0.0823593 q^{78} +6.52884 q^{79} -5.73050 q^{80} +1.00000 q^{81} -3.05767 q^{82} -2.28797 q^{83} +6.14399 q^{84} -1.61120 q^{86} -5.34565 q^{87} -8.01847 q^{88} -8.67282 q^{89} +1.52884 q^{90} -0.528837 q^{91} -12.5944 q^{92} +8.81681 q^{93} +3.43196 q^{94} -5.42801 q^{96} -5.91369 q^{97} -3.71203 q^{98} -3.81681 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 3 q^{3} + 5 q^{4} + 2 q^{5} - q^{6} - q^{7} - 3 q^{8} + 3 q^{9} - 4 q^{10} + 5 q^{12} - q^{13} - 3 q^{14} + 2 q^{15} + 5 q^{16} - q^{18} + 22 q^{20} - q^{21} + 18 q^{22} + 14 q^{23}+ \cdots - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.571993 −0.404460 −0.202230 0.979338i \(-0.564819\pi\)
−0.202230 + 0.979338i \(0.564819\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.67282 −0.836412
\(5\) −2.67282 −1.19532 −0.597662 0.801749i \(-0.703903\pi\)
−0.597662 + 0.801749i \(0.703903\pi\)
\(6\) −0.571993 −0.233515
\(7\) −3.67282 −1.38820 −0.694098 0.719880i \(-0.744197\pi\)
−0.694098 + 0.719880i \(0.744197\pi\)
\(8\) 2.10083 0.742756
\(9\) 1.00000 0.333333
\(10\) 1.52884 0.483461
\(11\) −3.81681 −1.15081 −0.575406 0.817868i \(-0.695156\pi\)
−0.575406 + 0.817868i \(0.695156\pi\)
\(12\) −1.67282 −0.482903
\(13\) 0.143987 0.0399347 0.0199673 0.999801i \(-0.493644\pi\)
0.0199673 + 0.999801i \(0.493644\pi\)
\(14\) 2.10083 0.561471
\(15\) −2.67282 −0.690120
\(16\) 2.14399 0.535997
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −0.571993 −0.134820
\(19\) 0 0
\(20\) 4.47116 0.999782
\(21\) −3.67282 −0.801476
\(22\) 2.18319 0.465458
\(23\) 7.52884 1.56987 0.784936 0.619577i \(-0.212696\pi\)
0.784936 + 0.619577i \(0.212696\pi\)
\(24\) 2.10083 0.428830
\(25\) 2.14399 0.428797
\(26\) −0.0823593 −0.0161520
\(27\) 1.00000 0.192450
\(28\) 6.14399 1.16110
\(29\) −5.34565 −0.992662 −0.496331 0.868133i \(-0.665320\pi\)
−0.496331 + 0.868133i \(0.665320\pi\)
\(30\) 1.52884 0.279126
\(31\) 8.81681 1.58355 0.791773 0.610816i \(-0.209158\pi\)
0.791773 + 0.610816i \(0.209158\pi\)
\(32\) −5.42801 −0.959545
\(33\) −3.81681 −0.664421
\(34\) 0 0
\(35\) 9.81681 1.65934
\(36\) −1.67282 −0.278804
\(37\) −1.00000 −0.164399 −0.0821995 0.996616i \(-0.526194\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) 0 0
\(39\) 0.143987 0.0230563
\(40\) −5.61515 −0.887833
\(41\) 5.34565 0.834850 0.417425 0.908711i \(-0.362933\pi\)
0.417425 + 0.908711i \(0.362933\pi\)
\(42\) 2.10083 0.324165
\(43\) 2.81681 0.429560 0.214780 0.976663i \(-0.431097\pi\)
0.214780 + 0.976663i \(0.431097\pi\)
\(44\) 6.38485 0.962552
\(45\) −2.67282 −0.398441
\(46\) −4.30644 −0.634951
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 2.14399 0.309458
\(49\) 6.48963 0.927091
\(50\) −1.22635 −0.173431
\(51\) 0 0
\(52\) −0.240864 −0.0334018
\(53\) 8.01847 1.10142 0.550711 0.834696i \(-0.314357\pi\)
0.550711 + 0.834696i \(0.314357\pi\)
\(54\) −0.571993 −0.0778384
\(55\) 10.2017 1.37559
\(56\) −7.71598 −1.03109
\(57\) 0 0
\(58\) 3.05767 0.401492
\(59\) 3.81681 0.496906 0.248453 0.968644i \(-0.420078\pi\)
0.248453 + 0.968644i \(0.420078\pi\)
\(60\) 4.47116 0.577225
\(61\) 11.4896 1.47110 0.735548 0.677472i \(-0.236925\pi\)
0.735548 + 0.677472i \(0.236925\pi\)
\(62\) −5.04316 −0.640481
\(63\) −3.67282 −0.462732
\(64\) −1.18319 −0.147899
\(65\) −0.384851 −0.0477348
\(66\) 2.18319 0.268732
\(67\) 5.38485 0.657864 0.328932 0.944354i \(-0.393311\pi\)
0.328932 + 0.944354i \(0.393311\pi\)
\(68\) 0 0
\(69\) 7.52884 0.906365
\(70\) −5.61515 −0.671139
\(71\) −13.6336 −1.61801 −0.809007 0.587800i \(-0.799994\pi\)
−0.809007 + 0.587800i \(0.799994\pi\)
\(72\) 2.10083 0.247585
\(73\) −0.345647 −0.0404550 −0.0202275 0.999795i \(-0.506439\pi\)
−0.0202275 + 0.999795i \(0.506439\pi\)
\(74\) 0.571993 0.0664929
\(75\) 2.14399 0.247566
\(76\) 0 0
\(77\) 14.0185 1.59755
\(78\) −0.0823593 −0.00932536
\(79\) 6.52884 0.734552 0.367276 0.930112i \(-0.380291\pi\)
0.367276 + 0.930112i \(0.380291\pi\)
\(80\) −5.73050 −0.640689
\(81\) 1.00000 0.111111
\(82\) −3.05767 −0.337664
\(83\) −2.28797 −0.251138 −0.125569 0.992085i \(-0.540076\pi\)
−0.125569 + 0.992085i \(0.540076\pi\)
\(84\) 6.14399 0.670364
\(85\) 0 0
\(86\) −1.61120 −0.173740
\(87\) −5.34565 −0.573114
\(88\) −8.01847 −0.854772
\(89\) −8.67282 −0.919317 −0.459659 0.888096i \(-0.652028\pi\)
−0.459659 + 0.888096i \(0.652028\pi\)
\(90\) 1.52884 0.161154
\(91\) −0.528837 −0.0554372
\(92\) −12.5944 −1.31306
\(93\) 8.81681 0.914261
\(94\) 3.43196 0.353980
\(95\) 0 0
\(96\) −5.42801 −0.553994
\(97\) −5.91369 −0.600444 −0.300222 0.953869i \(-0.597061\pi\)
−0.300222 + 0.953869i \(0.597061\pi\)
\(98\) −3.71203 −0.374971
\(99\) −3.81681 −0.383604
\(100\) −3.58651 −0.358651
\(101\) 8.28797 0.824684 0.412342 0.911029i \(-0.364711\pi\)
0.412342 + 0.911029i \(0.364711\pi\)
\(102\) 0 0
\(103\) 14.6521 1.44371 0.721857 0.692043i \(-0.243289\pi\)
0.721857 + 0.692043i \(0.243289\pi\)
\(104\) 0.302491 0.0296617
\(105\) 9.81681 0.958023
\(106\) −4.58651 −0.445481
\(107\) −16.6913 −1.61361 −0.806804 0.590819i \(-0.798805\pi\)
−0.806804 + 0.590819i \(0.798805\pi\)
\(108\) −1.67282 −0.160968
\(109\) 7.83528 0.750484 0.375242 0.926927i \(-0.377560\pi\)
0.375242 + 0.926927i \(0.377560\pi\)
\(110\) −5.83528 −0.556372
\(111\) −1.00000 −0.0949158
\(112\) −7.87448 −0.744069
\(113\) −6.38485 −0.600636 −0.300318 0.953839i \(-0.597093\pi\)
−0.300318 + 0.953839i \(0.597093\pi\)
\(114\) 0 0
\(115\) −20.1233 −1.87650
\(116\) 8.94233 0.830274
\(117\) 0.143987 0.0133116
\(118\) −2.18319 −0.200979
\(119\) 0 0
\(120\) −5.61515 −0.512591
\(121\) 3.56804 0.324367
\(122\) −6.57199 −0.595000
\(123\) 5.34565 0.482001
\(124\) −14.7490 −1.32450
\(125\) 7.63362 0.682772
\(126\) 2.10083 0.187157
\(127\) 2.65435 0.235536 0.117768 0.993041i \(-0.462426\pi\)
0.117768 + 0.993041i \(0.462426\pi\)
\(128\) 11.5328 1.01936
\(129\) 2.81681 0.248006
\(130\) 0.220132 0.0193069
\(131\) −11.3456 −0.991274 −0.495637 0.868530i \(-0.665065\pi\)
−0.495637 + 0.868530i \(0.665065\pi\)
\(132\) 6.38485 0.555730
\(133\) 0 0
\(134\) −3.08010 −0.266080
\(135\) −2.67282 −0.230040
\(136\) 0 0
\(137\) −1.63362 −0.139570 −0.0697848 0.997562i \(-0.522231\pi\)
−0.0697848 + 0.997562i \(0.522231\pi\)
\(138\) −4.30644 −0.366589
\(139\) 7.50811 0.636829 0.318415 0.947952i \(-0.396850\pi\)
0.318415 + 0.947952i \(0.396850\pi\)
\(140\) −16.4218 −1.38789
\(141\) −6.00000 −0.505291
\(142\) 7.79834 0.654422
\(143\) −0.549569 −0.0459573
\(144\) 2.14399 0.178666
\(145\) 14.2880 1.18655
\(146\) 0.197708 0.0163624
\(147\) 6.48963 0.535256
\(148\) 1.67282 0.137505
\(149\) 14.0185 1.14844 0.574219 0.818702i \(-0.305306\pi\)
0.574219 + 0.818702i \(0.305306\pi\)
\(150\) −1.22635 −0.100131
\(151\) 11.0577 0.899861 0.449930 0.893064i \(-0.351449\pi\)
0.449930 + 0.893064i \(0.351449\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −8.01847 −0.646147
\(155\) −23.5658 −1.89285
\(156\) −0.240864 −0.0192846
\(157\) 14.0577 1.12192 0.560962 0.827841i \(-0.310431\pi\)
0.560962 + 0.827841i \(0.310431\pi\)
\(158\) −3.73445 −0.297097
\(159\) 8.01847 0.635906
\(160\) 14.5081 1.14697
\(161\) −27.6521 −2.17929
\(162\) −0.571993 −0.0449400
\(163\) 4.61515 0.361486 0.180743 0.983530i \(-0.442150\pi\)
0.180743 + 0.983530i \(0.442150\pi\)
\(164\) −8.94233 −0.698278
\(165\) 10.2017 0.794198
\(166\) 1.30871 0.101575
\(167\) −12.2201 −0.945622 −0.472811 0.881164i \(-0.656761\pi\)
−0.472811 + 0.881164i \(0.656761\pi\)
\(168\) −7.71598 −0.595301
\(169\) −12.9793 −0.998405
\(170\) 0 0
\(171\) 0 0
\(172\) −4.71203 −0.359289
\(173\) 15.0577 1.14481 0.572407 0.819970i \(-0.306010\pi\)
0.572407 + 0.819970i \(0.306010\pi\)
\(174\) 3.05767 0.231802
\(175\) −7.87448 −0.595255
\(176\) −8.18319 −0.616831
\(177\) 3.81681 0.286889
\(178\) 4.96080 0.371827
\(179\) −15.1625 −1.13330 −0.566648 0.823960i \(-0.691760\pi\)
−0.566648 + 0.823960i \(0.691760\pi\)
\(180\) 4.47116 0.333261
\(181\) 12.2017 0.906942 0.453471 0.891271i \(-0.350186\pi\)
0.453471 + 0.891271i \(0.350186\pi\)
\(182\) 0.302491 0.0224221
\(183\) 11.4896 0.849338
\(184\) 15.8168 1.16603
\(185\) 2.67282 0.196510
\(186\) −5.04316 −0.369782
\(187\) 0 0
\(188\) 10.0369 0.732019
\(189\) −3.67282 −0.267159
\(190\) 0 0
\(191\) 5.45043 0.394379 0.197190 0.980365i \(-0.436819\pi\)
0.197190 + 0.980365i \(0.436819\pi\)
\(192\) −1.18319 −0.0853894
\(193\) −0.510366 −0.0367370 −0.0183685 0.999831i \(-0.505847\pi\)
−0.0183685 + 0.999831i \(0.505847\pi\)
\(194\) 3.38259 0.242856
\(195\) −0.384851 −0.0275597
\(196\) −10.8560 −0.775430
\(197\) 22.9608 1.63589 0.817945 0.575297i \(-0.195114\pi\)
0.817945 + 0.575297i \(0.195114\pi\)
\(198\) 2.18319 0.155153
\(199\) −0.125515 −0.00889755 −0.00444878 0.999990i \(-0.501416\pi\)
−0.00444878 + 0.999990i \(0.501416\pi\)
\(200\) 4.50415 0.318492
\(201\) 5.38485 0.379818
\(202\) −4.74066 −0.333552
\(203\) 19.6336 1.37801
\(204\) 0 0
\(205\) −14.2880 −0.997915
\(206\) −8.38090 −0.583925
\(207\) 7.52884 0.523290
\(208\) 0.308705 0.0214049
\(209\) 0 0
\(210\) −5.61515 −0.387482
\(211\) 24.8538 1.71100 0.855501 0.517800i \(-0.173249\pi\)
0.855501 + 0.517800i \(0.173249\pi\)
\(212\) −13.4135 −0.921242
\(213\) −13.6336 −0.934160
\(214\) 9.54731 0.652641
\(215\) −7.52884 −0.513462
\(216\) 2.10083 0.142943
\(217\) −32.3826 −2.19827
\(218\) −4.48173 −0.303541
\(219\) −0.345647 −0.0233567
\(220\) −17.0656 −1.15056
\(221\) 0 0
\(222\) 0.571993 0.0383897
\(223\) −23.7961 −1.59350 −0.796752 0.604307i \(-0.793450\pi\)
−0.796752 + 0.604307i \(0.793450\pi\)
\(224\) 19.9361 1.33204
\(225\) 2.14399 0.142932
\(226\) 3.65209 0.242934
\(227\) 9.81681 0.651565 0.325782 0.945445i \(-0.394372\pi\)
0.325782 + 0.945445i \(0.394372\pi\)
\(228\) 0 0
\(229\) 0.143987 0.00951490 0.00475745 0.999989i \(-0.498486\pi\)
0.00475745 + 0.999989i \(0.498486\pi\)
\(230\) 11.5104 0.758971
\(231\) 14.0185 0.922348
\(232\) −11.2303 −0.737305
\(233\) 10.5759 0.692853 0.346427 0.938077i \(-0.387395\pi\)
0.346427 + 0.938077i \(0.387395\pi\)
\(234\) −0.0823593 −0.00538400
\(235\) 16.0369 1.04613
\(236\) −6.38485 −0.415618
\(237\) 6.52884 0.424094
\(238\) 0 0
\(239\) −9.81681 −0.634997 −0.317498 0.948259i \(-0.602843\pi\)
−0.317498 + 0.948259i \(0.602843\pi\)
\(240\) −5.73050 −0.369902
\(241\) 1.94233 0.125116 0.0625581 0.998041i \(-0.480074\pi\)
0.0625581 + 0.998041i \(0.480074\pi\)
\(242\) −2.04090 −0.131194
\(243\) 1.00000 0.0641500
\(244\) −19.2201 −1.23044
\(245\) −17.3456 −1.10817
\(246\) −3.05767 −0.194950
\(247\) 0 0
\(248\) 18.5226 1.17619
\(249\) −2.28797 −0.144994
\(250\) −4.36638 −0.276154
\(251\) 13.6336 0.860546 0.430273 0.902699i \(-0.358417\pi\)
0.430273 + 0.902699i \(0.358417\pi\)
\(252\) 6.14399 0.387035
\(253\) −28.7361 −1.80663
\(254\) −1.51827 −0.0952648
\(255\) 0 0
\(256\) −4.23030 −0.264394
\(257\) −12.5944 −0.785618 −0.392809 0.919620i \(-0.628497\pi\)
−0.392809 + 0.919620i \(0.628497\pi\)
\(258\) −1.61120 −0.100309
\(259\) 3.67282 0.228218
\(260\) 0.643787 0.0399260
\(261\) −5.34565 −0.330887
\(262\) 6.48963 0.400931
\(263\) −1.63362 −0.100733 −0.0503667 0.998731i \(-0.516039\pi\)
−0.0503667 + 0.998731i \(0.516039\pi\)
\(264\) −8.01847 −0.493503
\(265\) −21.4320 −1.31655
\(266\) 0 0
\(267\) −8.67282 −0.530768
\(268\) −9.00791 −0.550245
\(269\) −21.6521 −1.32015 −0.660076 0.751199i \(-0.729476\pi\)
−0.660076 + 0.751199i \(0.729476\pi\)
\(270\) 1.52884 0.0930421
\(271\) −21.5552 −1.30939 −0.654693 0.755895i \(-0.727202\pi\)
−0.654693 + 0.755895i \(0.727202\pi\)
\(272\) 0 0
\(273\) −0.528837 −0.0320067
\(274\) 0.934420 0.0564504
\(275\) −8.18319 −0.493465
\(276\) −12.5944 −0.758095
\(277\) 7.62571 0.458185 0.229092 0.973405i \(-0.426424\pi\)
0.229092 + 0.973405i \(0.426424\pi\)
\(278\) −4.29459 −0.257572
\(279\) 8.81681 0.527849
\(280\) 20.6235 1.23249
\(281\) −1.69356 −0.101029 −0.0505145 0.998723i \(-0.516086\pi\)
−0.0505145 + 0.998723i \(0.516086\pi\)
\(282\) 3.43196 0.204370
\(283\) 10.2880 0.611557 0.305778 0.952103i \(-0.401083\pi\)
0.305778 + 0.952103i \(0.401083\pi\)
\(284\) 22.8066 1.35333
\(285\) 0 0
\(286\) 0.314350 0.0185879
\(287\) −19.6336 −1.15894
\(288\) −5.42801 −0.319848
\(289\) −17.0000 −1.00000
\(290\) −8.17262 −0.479913
\(291\) −5.91369 −0.346667
\(292\) 0.578207 0.0338370
\(293\) 12.1153 0.707786 0.353893 0.935286i \(-0.384858\pi\)
0.353893 + 0.935286i \(0.384858\pi\)
\(294\) −3.71203 −0.216490
\(295\) −10.2017 −0.593964
\(296\) −2.10083 −0.122108
\(297\) −3.81681 −0.221474
\(298\) −8.01847 −0.464498
\(299\) 1.08405 0.0626923
\(300\) −3.58651 −0.207067
\(301\) −10.3456 −0.596313
\(302\) −6.32492 −0.363958
\(303\) 8.28797 0.476132
\(304\) 0 0
\(305\) −30.7098 −1.75844
\(306\) 0 0
\(307\) −4.48963 −0.256237 −0.128118 0.991759i \(-0.540894\pi\)
−0.128118 + 0.991759i \(0.540894\pi\)
\(308\) −23.4504 −1.33621
\(309\) 14.6521 0.833528
\(310\) 13.4795 0.765582
\(311\) 0.759136 0.0430466 0.0215233 0.999768i \(-0.493148\pi\)
0.0215233 + 0.999768i \(0.493148\pi\)
\(312\) 0.302491 0.0171252
\(313\) 11.4320 0.646173 0.323086 0.946370i \(-0.395280\pi\)
0.323086 + 0.946370i \(0.395280\pi\)
\(314\) −8.04090 −0.453774
\(315\) 9.81681 0.553115
\(316\) −10.9216 −0.614388
\(317\) −11.6151 −0.652372 −0.326186 0.945306i \(-0.605764\pi\)
−0.326186 + 0.945306i \(0.605764\pi\)
\(318\) −4.58651 −0.257199
\(319\) 20.4033 1.14237
\(320\) 3.16246 0.176787
\(321\) −16.6913 −0.931617
\(322\) 15.8168 0.881436
\(323\) 0 0
\(324\) −1.67282 −0.0929347
\(325\) 0.308705 0.0171239
\(326\) −2.63983 −0.146207
\(327\) 7.83528 0.433292
\(328\) 11.2303 0.620090
\(329\) 22.0369 1.21494
\(330\) −5.83528 −0.321222
\(331\) −11.4712 −0.630512 −0.315256 0.949007i \(-0.602090\pi\)
−0.315256 + 0.949007i \(0.602090\pi\)
\(332\) 3.82738 0.210055
\(333\) −1.00000 −0.0547997
\(334\) 6.98983 0.382467
\(335\) −14.3928 −0.786360
\(336\) −7.87448 −0.429588
\(337\) 7.56804 0.412257 0.206129 0.978525i \(-0.433913\pi\)
0.206129 + 0.978525i \(0.433913\pi\)
\(338\) 7.42405 0.403815
\(339\) −6.38485 −0.346777
\(340\) 0 0
\(341\) −33.6521 −1.82236
\(342\) 0 0
\(343\) 1.87448 0.101213
\(344\) 5.91764 0.319058
\(345\) −20.1233 −1.08340
\(346\) −8.61289 −0.463032
\(347\) 21.8168 1.17119 0.585594 0.810605i \(-0.300861\pi\)
0.585594 + 0.810605i \(0.300861\pi\)
\(348\) 8.94233 0.479359
\(349\) −4.54731 −0.243412 −0.121706 0.992566i \(-0.538836\pi\)
−0.121706 + 0.992566i \(0.538836\pi\)
\(350\) 4.50415 0.240757
\(351\) 0.143987 0.00768543
\(352\) 20.7177 1.10426
\(353\) −8.99774 −0.478901 −0.239451 0.970909i \(-0.576967\pi\)
−0.239451 + 0.970909i \(0.576967\pi\)
\(354\) −2.18319 −0.116035
\(355\) 36.4403 1.93405
\(356\) 14.5081 0.768928
\(357\) 0 0
\(358\) 8.67282 0.458373
\(359\) 12.9793 0.685020 0.342510 0.939514i \(-0.388723\pi\)
0.342510 + 0.939514i \(0.388723\pi\)
\(360\) −5.61515 −0.295944
\(361\) 0 0
\(362\) −6.97927 −0.366822
\(363\) 3.56804 0.187274
\(364\) 0.884651 0.0463683
\(365\) 0.923855 0.0483568
\(366\) −6.57199 −0.343524
\(367\) −4.04711 −0.211257 −0.105629 0.994406i \(-0.533685\pi\)
−0.105629 + 0.994406i \(0.533685\pi\)
\(368\) 16.1417 0.841446
\(369\) 5.34565 0.278283
\(370\) −1.52884 −0.0794805
\(371\) −29.4504 −1.52899
\(372\) −14.7490 −0.764698
\(373\) 3.79834 0.196671 0.0983353 0.995153i \(-0.468648\pi\)
0.0983353 + 0.995153i \(0.468648\pi\)
\(374\) 0 0
\(375\) 7.63362 0.394198
\(376\) −12.6050 −0.650052
\(377\) −0.769701 −0.0396416
\(378\) 2.10083 0.108055
\(379\) 4.89522 0.251450 0.125725 0.992065i \(-0.459874\pi\)
0.125725 + 0.992065i \(0.459874\pi\)
\(380\) 0 0
\(381\) 2.65435 0.135987
\(382\) −3.11761 −0.159511
\(383\) 34.1417 1.74456 0.872280 0.489006i \(-0.162640\pi\)
0.872280 + 0.489006i \(0.162640\pi\)
\(384\) 11.5328 0.588530
\(385\) −37.4689 −1.90959
\(386\) 0.291926 0.0148586
\(387\) 2.81681 0.143187
\(388\) 9.89256 0.502218
\(389\) 26.8824 1.36299 0.681496 0.731822i \(-0.261330\pi\)
0.681496 + 0.731822i \(0.261330\pi\)
\(390\) 0.220132 0.0111468
\(391\) 0 0
\(392\) 13.6336 0.688602
\(393\) −11.3456 −0.572312
\(394\) −13.1334 −0.661652
\(395\) −17.4504 −0.878026
\(396\) 6.38485 0.320851
\(397\) 25.2386 1.26669 0.633345 0.773870i \(-0.281682\pi\)
0.633345 + 0.773870i \(0.281682\pi\)
\(398\) 0.0717940 0.00359871
\(399\) 0 0
\(400\) 4.59668 0.229834
\(401\) −3.32718 −0.166151 −0.0830756 0.996543i \(-0.526474\pi\)
−0.0830756 + 0.996543i \(0.526474\pi\)
\(402\) −3.08010 −0.153621
\(403\) 1.26950 0.0632384
\(404\) −13.8643 −0.689776
\(405\) −2.67282 −0.132814
\(406\) −11.2303 −0.557350
\(407\) 3.81681 0.189192
\(408\) 0 0
\(409\) 34.1233 1.68729 0.843643 0.536904i \(-0.180406\pi\)
0.843643 + 0.536904i \(0.180406\pi\)
\(410\) 8.17262 0.403617
\(411\) −1.63362 −0.0805806
\(412\) −24.5104 −1.20754
\(413\) −14.0185 −0.689804
\(414\) −4.30644 −0.211650
\(415\) 6.11535 0.300191
\(416\) −0.781560 −0.0383191
\(417\) 7.50811 0.367673
\(418\) 0 0
\(419\) −9.16246 −0.447615 −0.223808 0.974633i \(-0.571849\pi\)
−0.223808 + 0.974633i \(0.571849\pi\)
\(420\) −16.4218 −0.801301
\(421\) −15.8353 −0.771764 −0.385882 0.922548i \(-0.626103\pi\)
−0.385882 + 0.922548i \(0.626103\pi\)
\(422\) −14.2162 −0.692033
\(423\) −6.00000 −0.291730
\(424\) 16.8454 0.818087
\(425\) 0 0
\(426\) 7.79834 0.377831
\(427\) −42.1994 −2.04217
\(428\) 27.9216 1.34964
\(429\) −0.549569 −0.0265335
\(430\) 4.30644 0.207675
\(431\) −9.26724 −0.446387 −0.223194 0.974774i \(-0.571648\pi\)
−0.223194 + 0.974774i \(0.571648\pi\)
\(432\) 2.14399 0.103153
\(433\) −19.8145 −0.952226 −0.476113 0.879384i \(-0.657955\pi\)
−0.476113 + 0.879384i \(0.657955\pi\)
\(434\) 18.5226 0.889114
\(435\) 14.2880 0.685056
\(436\) −13.1070 −0.627714
\(437\) 0 0
\(438\) 0.197708 0.00944685
\(439\) 6.90312 0.329468 0.164734 0.986338i \(-0.447323\pi\)
0.164734 + 0.986338i \(0.447323\pi\)
\(440\) 21.4320 1.02173
\(441\) 6.48963 0.309030
\(442\) 0 0
\(443\) −19.6336 −0.932821 −0.466411 0.884568i \(-0.654453\pi\)
−0.466411 + 0.884568i \(0.654453\pi\)
\(444\) 1.67282 0.0793887
\(445\) 23.1809 1.09888
\(446\) 13.6112 0.644509
\(447\) 14.0185 0.663051
\(448\) 4.34565 0.205313
\(449\) 29.0162 1.36936 0.684680 0.728844i \(-0.259942\pi\)
0.684680 + 0.728844i \(0.259942\pi\)
\(450\) −1.22635 −0.0578105
\(451\) −20.4033 −0.960755
\(452\) 10.6807 0.502379
\(453\) 11.0577 0.519535
\(454\) −5.61515 −0.263532
\(455\) 1.41349 0.0662654
\(456\) 0 0
\(457\) 32.5473 1.52250 0.761249 0.648459i \(-0.224586\pi\)
0.761249 + 0.648459i \(0.224586\pi\)
\(458\) −0.0823593 −0.00384840
\(459\) 0 0
\(460\) 33.6627 1.56953
\(461\) −9.65209 −0.449543 −0.224771 0.974412i \(-0.572164\pi\)
−0.224771 + 0.974412i \(0.572164\pi\)
\(462\) −8.01847 −0.373053
\(463\) −31.0554 −1.44327 −0.721634 0.692275i \(-0.756608\pi\)
−0.721634 + 0.692275i \(0.756608\pi\)
\(464\) −11.4610 −0.532063
\(465\) −23.5658 −1.09284
\(466\) −6.04937 −0.280232
\(467\) 8.61289 0.398557 0.199278 0.979943i \(-0.436140\pi\)
0.199278 + 0.979943i \(0.436140\pi\)
\(468\) −0.240864 −0.0111339
\(469\) −19.7776 −0.913245
\(470\) −9.17302 −0.423120
\(471\) 14.0577 0.647743
\(472\) 8.01847 0.369080
\(473\) −10.7512 −0.494342
\(474\) −3.73445 −0.171529
\(475\) 0 0
\(476\) 0 0
\(477\) 8.01847 0.367141
\(478\) 5.61515 0.256831
\(479\) 17.4610 0.797813 0.398907 0.916992i \(-0.369390\pi\)
0.398907 + 0.916992i \(0.369390\pi\)
\(480\) 14.5081 0.662201
\(481\) −0.143987 −0.00656522
\(482\) −1.11100 −0.0506045
\(483\) −27.6521 −1.25821
\(484\) −5.96870 −0.271305
\(485\) 15.8062 0.717725
\(486\) −0.571993 −0.0259461
\(487\) −11.6336 −0.527170 −0.263585 0.964636i \(-0.584905\pi\)
−0.263585 + 0.964636i \(0.584905\pi\)
\(488\) 24.1378 1.09267
\(489\) 4.61515 0.208704
\(490\) 9.92159 0.448212
\(491\) −24.3249 −1.09777 −0.548884 0.835899i \(-0.684947\pi\)
−0.548884 + 0.835899i \(0.684947\pi\)
\(492\) −8.94233 −0.403151
\(493\) 0 0
\(494\) 0 0
\(495\) 10.2017 0.458531
\(496\) 18.9031 0.848775
\(497\) 50.0739 2.24612
\(498\) 1.30871 0.0586445
\(499\) 38.1131 1.70618 0.853088 0.521767i \(-0.174727\pi\)
0.853088 + 0.521767i \(0.174727\pi\)
\(500\) −12.7697 −0.571078
\(501\) −12.2201 −0.545955
\(502\) −7.79834 −0.348057
\(503\) 4.36638 0.194687 0.0973436 0.995251i \(-0.468965\pi\)
0.0973436 + 0.995251i \(0.468965\pi\)
\(504\) −7.71598 −0.343697
\(505\) −22.1523 −0.985764
\(506\) 16.4369 0.730708
\(507\) −12.9793 −0.576430
\(508\) −4.44026 −0.197005
\(509\) −15.7120 −0.696423 −0.348212 0.937416i \(-0.613211\pi\)
−0.348212 + 0.937416i \(0.613211\pi\)
\(510\) 0 0
\(511\) 1.26950 0.0561595
\(512\) −20.6459 −0.912428
\(513\) 0 0
\(514\) 7.20392 0.317751
\(515\) −39.1625 −1.72570
\(516\) −4.71203 −0.207435
\(517\) 22.9009 1.00718
\(518\) −2.10083 −0.0923052
\(519\) 15.0577 0.660959
\(520\) −0.808506 −0.0354553
\(521\) 33.4425 1.46514 0.732572 0.680690i \(-0.238320\pi\)
0.732572 + 0.680690i \(0.238320\pi\)
\(522\) 3.05767 0.133831
\(523\) −29.4218 −1.28653 −0.643263 0.765646i \(-0.722420\pi\)
−0.643263 + 0.765646i \(0.722420\pi\)
\(524\) 18.9793 0.829113
\(525\) −7.87448 −0.343671
\(526\) 0.934420 0.0407426
\(527\) 0 0
\(528\) −8.18319 −0.356128
\(529\) 33.6834 1.46450
\(530\) 12.2589 0.532494
\(531\) 3.81681 0.165635
\(532\) 0 0
\(533\) 0.769701 0.0333395
\(534\) 4.96080 0.214675
\(535\) 44.6129 1.92878
\(536\) 11.3127 0.488632
\(537\) −15.1625 −0.654308
\(538\) 12.3849 0.533949
\(539\) −24.7697 −1.06691
\(540\) 4.47116 0.192408
\(541\) 26.1730 1.12527 0.562633 0.826707i \(-0.309788\pi\)
0.562633 + 0.826707i \(0.309788\pi\)
\(542\) 12.3294 0.529595
\(543\) 12.2017 0.523623
\(544\) 0 0
\(545\) −20.9423 −0.897071
\(546\) 0.302491 0.0129454
\(547\) 21.9114 0.936865 0.468432 0.883499i \(-0.344819\pi\)
0.468432 + 0.883499i \(0.344819\pi\)
\(548\) 2.73276 0.116738
\(549\) 11.4896 0.490366
\(550\) 4.68073 0.199587
\(551\) 0 0
\(552\) 15.8168 0.673208
\(553\) −23.9793 −1.01970
\(554\) −4.36186 −0.185318
\(555\) 2.67282 0.113455
\(556\) −12.5597 −0.532651
\(557\) 34.0369 1.44219 0.721096 0.692835i \(-0.243639\pi\)
0.721096 + 0.692835i \(0.243639\pi\)
\(558\) −5.04316 −0.213494
\(559\) 0.405583 0.0171543
\(560\) 21.0471 0.889403
\(561\) 0 0
\(562\) 0.968703 0.0408622
\(563\) 11.5552 0.486994 0.243497 0.969902i \(-0.421705\pi\)
0.243497 + 0.969902i \(0.421705\pi\)
\(564\) 10.0369 0.422632
\(565\) 17.0656 0.717954
\(566\) −5.88465 −0.247350
\(567\) −3.67282 −0.154244
\(568\) −28.6419 −1.20179
\(569\) 39.7075 1.66463 0.832313 0.554307i \(-0.187016\pi\)
0.832313 + 0.554307i \(0.187016\pi\)
\(570\) 0 0
\(571\) 14.6521 0.613171 0.306585 0.951843i \(-0.400813\pi\)
0.306585 + 0.951843i \(0.400813\pi\)
\(572\) 0.919333 0.0384392
\(573\) 5.45043 0.227695
\(574\) 11.2303 0.468744
\(575\) 16.1417 0.673156
\(576\) −1.18319 −0.0492996
\(577\) 20.8145 0.866521 0.433261 0.901269i \(-0.357363\pi\)
0.433261 + 0.901269i \(0.357363\pi\)
\(578\) 9.72389 0.404460
\(579\) −0.510366 −0.0212101
\(580\) −23.9013 −0.992446
\(581\) 8.40332 0.348629
\(582\) 3.38259 0.140213
\(583\) −30.6050 −1.26753
\(584\) −0.726147 −0.0300482
\(585\) −0.384851 −0.0159116
\(586\) −6.92990 −0.286271
\(587\) 19.6442 0.810802 0.405401 0.914139i \(-0.367132\pi\)
0.405401 + 0.914139i \(0.367132\pi\)
\(588\) −10.8560 −0.447694
\(589\) 0 0
\(590\) 5.83528 0.240235
\(591\) 22.9608 0.944481
\(592\) −2.14399 −0.0881173
\(593\) 21.6521 0.889145 0.444572 0.895743i \(-0.353356\pi\)
0.444572 + 0.895743i \(0.353356\pi\)
\(594\) 2.18319 0.0895774
\(595\) 0 0
\(596\) −23.4504 −0.960567
\(597\) −0.125515 −0.00513700
\(598\) −0.620070 −0.0253565
\(599\) −11.7799 −0.481312 −0.240656 0.970610i \(-0.577363\pi\)
−0.240656 + 0.970610i \(0.577363\pi\)
\(600\) 4.50415 0.183881
\(601\) −11.4112 −0.465474 −0.232737 0.972540i \(-0.574768\pi\)
−0.232737 + 0.972540i \(0.574768\pi\)
\(602\) 5.91764 0.241185
\(603\) 5.38485 0.219288
\(604\) −18.4975 −0.752654
\(605\) −9.53674 −0.387724
\(606\) −4.74066 −0.192576
\(607\) −1.10478 −0.0448418 −0.0224209 0.999749i \(-0.507137\pi\)
−0.0224209 + 0.999749i \(0.507137\pi\)
\(608\) 0 0
\(609\) 19.6336 0.795594
\(610\) 17.5658 0.711218
\(611\) −0.863919 −0.0349504
\(612\) 0 0
\(613\) 4.77761 0.192966 0.0964829 0.995335i \(-0.469241\pi\)
0.0964829 + 0.995335i \(0.469241\pi\)
\(614\) 2.56804 0.103638
\(615\) −14.2880 −0.576147
\(616\) 29.4504 1.18659
\(617\) 37.4795 1.50887 0.754433 0.656377i \(-0.227912\pi\)
0.754433 + 0.656377i \(0.227912\pi\)
\(618\) −8.38090 −0.337129
\(619\) −0.615149 −0.0247249 −0.0123625 0.999924i \(-0.503935\pi\)
−0.0123625 + 0.999924i \(0.503935\pi\)
\(620\) 39.4214 1.58320
\(621\) 7.52884 0.302122
\(622\) −0.434221 −0.0174107
\(623\) 31.8538 1.27619
\(624\) 0.308705 0.0123581
\(625\) −31.1233 −1.24493
\(626\) −6.53900 −0.261351
\(627\) 0 0
\(628\) −23.5160 −0.938391
\(629\) 0 0
\(630\) −5.61515 −0.223713
\(631\) 21.3064 0.848196 0.424098 0.905616i \(-0.360591\pi\)
0.424098 + 0.905616i \(0.360591\pi\)
\(632\) 13.7160 0.545592
\(633\) 24.8538 0.987848
\(634\) 6.64379 0.263858
\(635\) −7.09462 −0.281541
\(636\) −13.4135 −0.531879
\(637\) 0.934420 0.0370231
\(638\) −11.6706 −0.462042
\(639\) −13.6336 −0.539338
\(640\) −30.8251 −1.21847
\(641\) 39.9216 1.57681 0.788404 0.615158i \(-0.210908\pi\)
0.788404 + 0.615158i \(0.210908\pi\)
\(642\) 9.54731 0.376802
\(643\) −37.3849 −1.47431 −0.737157 0.675721i \(-0.763832\pi\)
−0.737157 + 0.675721i \(0.763832\pi\)
\(644\) 46.2571 1.82278
\(645\) −7.52884 −0.296448
\(646\) 0 0
\(647\) 16.0369 0.630477 0.315239 0.949012i \(-0.397915\pi\)
0.315239 + 0.949012i \(0.397915\pi\)
\(648\) 2.10083 0.0825284
\(649\) −14.5680 −0.571846
\(650\) −0.176577 −0.00692593
\(651\) −32.3826 −1.26917
\(652\) −7.72033 −0.302352
\(653\) 13.4241 0.525324 0.262662 0.964888i \(-0.415400\pi\)
0.262662 + 0.964888i \(0.415400\pi\)
\(654\) −4.48173 −0.175249
\(655\) 30.3249 1.18489
\(656\) 11.4610 0.447477
\(657\) −0.345647 −0.0134850
\(658\) −12.6050 −0.491393
\(659\) −18.5450 −0.722412 −0.361206 0.932486i \(-0.617635\pi\)
−0.361206 + 0.932486i \(0.617635\pi\)
\(660\) −17.0656 −0.664277
\(661\) 6.57595 0.255775 0.127887 0.991789i \(-0.459180\pi\)
0.127887 + 0.991789i \(0.459180\pi\)
\(662\) 6.56143 0.255017
\(663\) 0 0
\(664\) −4.80664 −0.186534
\(665\) 0 0
\(666\) 0.571993 0.0221643
\(667\) −40.2465 −1.55835
\(668\) 20.4421 0.790930
\(669\) −23.7961 −0.920010
\(670\) 8.23256 0.318052
\(671\) −43.8538 −1.69296
\(672\) 19.9361 0.769052
\(673\) −39.2386 −1.51254 −0.756268 0.654261i \(-0.772980\pi\)
−0.756268 + 0.654261i \(0.772980\pi\)
\(674\) −4.32887 −0.166742
\(675\) 2.14399 0.0825221
\(676\) 21.7120 0.835078
\(677\) −25.8432 −0.993234 −0.496617 0.867970i \(-0.665425\pi\)
−0.496617 + 0.867970i \(0.665425\pi\)
\(678\) 3.65209 0.140258
\(679\) 21.7199 0.833535
\(680\) 0 0
\(681\) 9.81681 0.376181
\(682\) 19.2488 0.737073
\(683\) 42.9898 1.64496 0.822480 0.568794i \(-0.192590\pi\)
0.822480 + 0.568794i \(0.192590\pi\)
\(684\) 0 0
\(685\) 4.36638 0.166831
\(686\) −1.07219 −0.0409365
\(687\) 0.143987 0.00549343
\(688\) 6.03920 0.230242
\(689\) 1.15455 0.0439849
\(690\) 11.5104 0.438192
\(691\) −48.4033 −1.84135 −0.920675 0.390331i \(-0.872361\pi\)
−0.920675 + 0.390331i \(0.872361\pi\)
\(692\) −25.1888 −0.957536
\(693\) 14.0185 0.532518
\(694\) −12.4791 −0.473699
\(695\) −20.0678 −0.761217
\(696\) −11.2303 −0.425683
\(697\) 0 0
\(698\) 2.60103 0.0984504
\(699\) 10.5759 0.400019
\(700\) 13.1726 0.497878
\(701\) −3.21183 −0.121309 −0.0606545 0.998159i \(-0.519319\pi\)
−0.0606545 + 0.998159i \(0.519319\pi\)
\(702\) −0.0823593 −0.00310845
\(703\) 0 0
\(704\) 4.51601 0.170204
\(705\) 16.0369 0.603986
\(706\) 5.14665 0.193697
\(707\) −30.4403 −1.14482
\(708\) −6.38485 −0.239957
\(709\) 22.0656 0.828690 0.414345 0.910120i \(-0.364011\pi\)
0.414345 + 0.910120i \(0.364011\pi\)
\(710\) −20.8436 −0.782246
\(711\) 6.52884 0.244851
\(712\) −18.2201 −0.682828
\(713\) 66.3803 2.48596
\(714\) 0 0
\(715\) 1.46890 0.0549338
\(716\) 25.3641 0.947902
\(717\) −9.81681 −0.366615
\(718\) −7.42405 −0.277063
\(719\) 17.6600 0.658607 0.329303 0.944224i \(-0.393186\pi\)
0.329303 + 0.944224i \(0.393186\pi\)
\(720\) −5.73050 −0.213563
\(721\) −53.8145 −2.00416
\(722\) 0 0
\(723\) 1.94233 0.0722359
\(724\) −20.4112 −0.758577
\(725\) −11.4610 −0.425651
\(726\) −2.04090 −0.0757447
\(727\) −40.3932 −1.49810 −0.749050 0.662514i \(-0.769490\pi\)
−0.749050 + 0.662514i \(0.769490\pi\)
\(728\) −1.11100 −0.0411763
\(729\) 1.00000 0.0370370
\(730\) −0.528439 −0.0195584
\(731\) 0 0
\(732\) −19.2201 −0.710397
\(733\) −17.9137 −0.661657 −0.330829 0.943691i \(-0.607328\pi\)
−0.330829 + 0.943691i \(0.607328\pi\)
\(734\) 2.31492 0.0854452
\(735\) −17.3456 −0.639804
\(736\) −40.8666 −1.50636
\(737\) −20.5530 −0.757078
\(738\) −3.05767 −0.112555
\(739\) −16.9770 −0.624509 −0.312255 0.949998i \(-0.601084\pi\)
−0.312255 + 0.949998i \(0.601084\pi\)
\(740\) −4.47116 −0.164363
\(741\) 0 0
\(742\) 16.8454 0.618416
\(743\) −50.7177 −1.86065 −0.930325 0.366735i \(-0.880476\pi\)
−0.930325 + 0.366735i \(0.880476\pi\)
\(744\) 18.5226 0.679072
\(745\) −37.4689 −1.37275
\(746\) −2.17262 −0.0795454
\(747\) −2.28797 −0.0837126
\(748\) 0 0
\(749\) 61.3042 2.24001
\(750\) −4.36638 −0.159438
\(751\) −25.5944 −0.933954 −0.466977 0.884270i \(-0.654657\pi\)
−0.466977 + 0.884270i \(0.654657\pi\)
\(752\) −12.8639 −0.469099
\(753\) 13.6336 0.496837
\(754\) 0.440264 0.0160335
\(755\) −29.5552 −1.07562
\(756\) 6.14399 0.223455
\(757\) 45.7361 1.66231 0.831154 0.556042i \(-0.187681\pi\)
0.831154 + 0.556042i \(0.187681\pi\)
\(758\) −2.80003 −0.101702
\(759\) −28.7361 −1.04306
\(760\) 0 0
\(761\) −44.1338 −1.59985 −0.799925 0.600100i \(-0.795127\pi\)
−0.799925 + 0.600100i \(0.795127\pi\)
\(762\) −1.51827 −0.0550012
\(763\) −28.7776 −1.04182
\(764\) −9.11761 −0.329864
\(765\) 0 0
\(766\) −19.5288 −0.705606
\(767\) 0.549569 0.0198438
\(768\) −4.23030 −0.152648
\(769\) −44.0946 −1.59009 −0.795046 0.606549i \(-0.792553\pi\)
−0.795046 + 0.606549i \(0.792553\pi\)
\(770\) 21.4320 0.772354
\(771\) −12.5944 −0.453577
\(772\) 0.853752 0.0307272
\(773\) 4.90086 0.176272 0.0881359 0.996108i \(-0.471909\pi\)
0.0881359 + 0.996108i \(0.471909\pi\)
\(774\) −1.61120 −0.0579133
\(775\) 18.9031 0.679020
\(776\) −12.4237 −0.445983
\(777\) 3.67282 0.131762
\(778\) −15.3765 −0.551276
\(779\) 0 0
\(780\) 0.643787 0.0230513
\(781\) 52.0369 1.86203
\(782\) 0 0
\(783\) −5.34565 −0.191038
\(784\) 13.9137 0.496917
\(785\) −37.5737 −1.34106
\(786\) 6.48963 0.231478
\(787\) 35.0554 1.24959 0.624795 0.780789i \(-0.285182\pi\)
0.624795 + 0.780789i \(0.285182\pi\)
\(788\) −38.4094 −1.36828
\(789\) −1.63362 −0.0581584
\(790\) 9.98153 0.355127
\(791\) 23.4504 0.833801
\(792\) −8.01847 −0.284924
\(793\) 1.65435 0.0587478
\(794\) −14.4363 −0.512326
\(795\) −21.4320 −0.760113
\(796\) 0.209965 0.00744202
\(797\) −5.67056 −0.200862 −0.100431 0.994944i \(-0.532022\pi\)
−0.100431 + 0.994944i \(0.532022\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −11.6376 −0.411450
\(801\) −8.67282 −0.306439
\(802\) 1.90312 0.0672016
\(803\) 1.31927 0.0465560
\(804\) −9.00791 −0.317684
\(805\) 73.9092 2.60496
\(806\) −0.726147 −0.0255774
\(807\) −21.6521 −0.762190
\(808\) 17.4116 0.612539
\(809\) 10.6359 0.373938 0.186969 0.982366i \(-0.440134\pi\)
0.186969 + 0.982366i \(0.440134\pi\)
\(810\) 1.52884 0.0537179
\(811\) 27.3042 0.958780 0.479390 0.877602i \(-0.340858\pi\)
0.479390 + 0.877602i \(0.340858\pi\)
\(812\) −32.8436 −1.15258
\(813\) −21.5552 −0.755974
\(814\) −2.18319 −0.0765208
\(815\) −12.3355 −0.432093
\(816\) 0 0
\(817\) 0 0
\(818\) −19.5183 −0.682440
\(819\) −0.528837 −0.0184791
\(820\) 23.9013 0.834668
\(821\) 21.1730 0.738944 0.369472 0.929242i \(-0.379539\pi\)
0.369472 + 0.929242i \(0.379539\pi\)
\(822\) 0.934420 0.0325916
\(823\) 46.7282 1.62884 0.814422 0.580273i \(-0.197054\pi\)
0.814422 + 0.580273i \(0.197054\pi\)
\(824\) 30.7816 1.07233
\(825\) −8.18319 −0.284902
\(826\) 8.01847 0.278998
\(827\) −5.67508 −0.197342 −0.0986710 0.995120i \(-0.531459\pi\)
−0.0986710 + 0.995120i \(0.531459\pi\)
\(828\) −12.5944 −0.437686
\(829\) −22.3377 −0.775822 −0.387911 0.921697i \(-0.626803\pi\)
−0.387911 + 0.921697i \(0.626803\pi\)
\(830\) −3.49794 −0.121415
\(831\) 7.62571 0.264533
\(832\) −0.170363 −0.00590629
\(833\) 0 0
\(834\) −4.29459 −0.148709
\(835\) 32.6623 1.13032
\(836\) 0 0
\(837\) 8.81681 0.304754
\(838\) 5.24086 0.181043
\(839\) −13.0841 −0.451712 −0.225856 0.974161i \(-0.572518\pi\)
−0.225856 + 0.974161i \(0.572518\pi\)
\(840\) 20.6235 0.711577
\(841\) −0.424054 −0.0146225
\(842\) 9.05767 0.312148
\(843\) −1.69356 −0.0583292
\(844\) −41.5759 −1.43110
\(845\) 34.6913 1.19342
\(846\) 3.43196 0.117993
\(847\) −13.1048 −0.450286
\(848\) 17.1915 0.590358
\(849\) 10.2880 0.353082
\(850\) 0 0
\(851\) −7.52884 −0.258085
\(852\) 22.8066 0.781343
\(853\) 40.2258 1.37730 0.688652 0.725092i \(-0.258203\pi\)
0.688652 + 0.725092i \(0.258203\pi\)
\(854\) 24.1378 0.825978
\(855\) 0 0
\(856\) −35.0656 −1.19852
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 0.314350 0.0107317
\(859\) −21.8824 −0.746618 −0.373309 0.927707i \(-0.621777\pi\)
−0.373309 + 0.927707i \(0.621777\pi\)
\(860\) 12.5944 0.429466
\(861\) −19.6336 −0.669112
\(862\) 5.30080 0.180546
\(863\) −10.5759 −0.360009 −0.180005 0.983666i \(-0.557611\pi\)
−0.180005 + 0.983666i \(0.557611\pi\)
\(864\) −5.42801 −0.184665
\(865\) −40.2465 −1.36842
\(866\) 11.3338 0.385138
\(867\) −17.0000 −0.577350
\(868\) 54.1704 1.83866
\(869\) −24.9193 −0.845330
\(870\) −8.17262 −0.277078
\(871\) 0.775346 0.0262716
\(872\) 16.4606 0.557426
\(873\) −5.91369 −0.200148
\(874\) 0 0
\(875\) −28.0369 −0.947822
\(876\) 0.578207 0.0195358
\(877\) −43.5345 −1.47006 −0.735028 0.678037i \(-0.762831\pi\)
−0.735028 + 0.678037i \(0.762831\pi\)
\(878\) −3.94854 −0.133257
\(879\) 12.1153 0.408641
\(880\) 21.8722 0.737313
\(881\) 4.96080 0.167133 0.0835667 0.996502i \(-0.473369\pi\)
0.0835667 + 0.996502i \(0.473369\pi\)
\(882\) −3.71203 −0.124990
\(883\) −13.0106 −0.437840 −0.218920 0.975743i \(-0.570253\pi\)
−0.218920 + 0.975743i \(0.570253\pi\)
\(884\) 0 0
\(885\) −10.2017 −0.342925
\(886\) 11.2303 0.377289
\(887\) 34.1417 1.14637 0.573183 0.819427i \(-0.305708\pi\)
0.573183 + 0.819427i \(0.305708\pi\)
\(888\) −2.10083 −0.0704993
\(889\) −9.74897 −0.326970
\(890\) −13.2593 −0.444454
\(891\) −3.81681 −0.127868
\(892\) 39.8066 1.33283
\(893\) 0 0
\(894\) −8.01847 −0.268178
\(895\) 40.5266 1.35465
\(896\) −42.3579 −1.41508
\(897\) 1.08405 0.0361954
\(898\) −16.5971 −0.553852
\(899\) −47.1316 −1.57193
\(900\) −3.58651 −0.119550
\(901\) 0 0
\(902\) 11.6706 0.388587
\(903\) −10.3456 −0.344282
\(904\) −13.4135 −0.446126
\(905\) −32.6129 −1.08409
\(906\) −6.32492 −0.210131
\(907\) 47.4979 1.57714 0.788572 0.614943i \(-0.210821\pi\)
0.788572 + 0.614943i \(0.210821\pi\)
\(908\) −16.4218 −0.544976
\(909\) 8.28797 0.274895
\(910\) −0.808506 −0.0268017
\(911\) −46.1523 −1.52909 −0.764547 0.644568i \(-0.777037\pi\)
−0.764547 + 0.644568i \(0.777037\pi\)
\(912\) 0 0
\(913\) 8.73276 0.289012
\(914\) −18.6168 −0.615790
\(915\) −30.7098 −1.01523
\(916\) −0.240864 −0.00795837
\(917\) 41.6706 1.37608
\(918\) 0 0
\(919\) −29.5160 −0.973643 −0.486822 0.873501i \(-0.661844\pi\)
−0.486822 + 0.873501i \(0.661844\pi\)
\(920\) −42.2755 −1.39378
\(921\) −4.48963 −0.147938
\(922\) 5.52093 0.181822
\(923\) −1.96306 −0.0646148
\(924\) −23.4504 −0.771463
\(925\) −2.14399 −0.0704938
\(926\) 17.7635 0.583744
\(927\) 14.6521 0.481238
\(928\) 29.0162 0.952504
\(929\) −39.4425 −1.29407 −0.647034 0.762461i \(-0.723991\pi\)
−0.647034 + 0.762461i \(0.723991\pi\)
\(930\) 13.4795 0.442009
\(931\) 0 0
\(932\) −17.6917 −0.579511
\(933\) 0.759136 0.0248530
\(934\) −4.92651 −0.161200
\(935\) 0 0
\(936\) 0.302491 0.00988724
\(937\) 27.7361 0.906100 0.453050 0.891485i \(-0.350336\pi\)
0.453050 + 0.891485i \(0.350336\pi\)
\(938\) 11.3127 0.369371
\(939\) 11.4320 0.373068
\(940\) −26.8270 −0.875000
\(941\) −16.2465 −0.529621 −0.264811 0.964300i \(-0.585309\pi\)
−0.264811 + 0.964300i \(0.585309\pi\)
\(942\) −8.04090 −0.261987
\(943\) 40.2465 1.31061
\(944\) 8.18319 0.266340
\(945\) 9.81681 0.319341
\(946\) 6.14963 0.199942
\(947\) −15.9216 −0.517382 −0.258691 0.965960i \(-0.583291\pi\)
−0.258691 + 0.965960i \(0.583291\pi\)
\(948\) −10.9216 −0.354717
\(949\) −0.0497686 −0.00161556
\(950\) 0 0
\(951\) −11.6151 −0.376647
\(952\) 0 0
\(953\) 35.9401 1.16421 0.582106 0.813113i \(-0.302229\pi\)
0.582106 + 0.813113i \(0.302229\pi\)
\(954\) −4.58651 −0.148494
\(955\) −14.5680 −0.471411
\(956\) 16.4218 0.531119
\(957\) 20.4033 0.659546
\(958\) −9.98757 −0.322684
\(959\) 6.00000 0.193750
\(960\) 3.16246 0.102068
\(961\) 46.7361 1.50762
\(962\) 0.0823593 0.00265537
\(963\) −16.6913 −0.537869
\(964\) −3.24917 −0.104649
\(965\) 1.36412 0.0439125
\(966\) 15.8168 0.508898
\(967\) 2.60724 0.0838433 0.0419217 0.999121i \(-0.486652\pi\)
0.0419217 + 0.999121i \(0.486652\pi\)
\(968\) 7.49585 0.240926
\(969\) 0 0
\(970\) −9.04107 −0.290291
\(971\) 16.1312 0.517674 0.258837 0.965921i \(-0.416661\pi\)
0.258837 + 0.965921i \(0.416661\pi\)
\(972\) −1.67282 −0.0536558
\(973\) −27.5759 −0.884044
\(974\) 6.65435 0.213219
\(975\) 0.308705 0.00988648
\(976\) 24.6336 0.788503
\(977\) −3.17302 −0.101514 −0.0507570 0.998711i \(-0.516163\pi\)
−0.0507570 + 0.998711i \(0.516163\pi\)
\(978\) −2.63983 −0.0844126
\(979\) 33.1025 1.05796
\(980\) 29.0162 0.926889
\(981\) 7.83528 0.250161
\(982\) 13.9137 0.444004
\(983\) 20.8330 0.664470 0.332235 0.943197i \(-0.392197\pi\)
0.332235 + 0.943197i \(0.392197\pi\)
\(984\) 11.2303 0.358009
\(985\) −61.3702 −1.95542
\(986\) 0 0
\(987\) 22.0369 0.701444
\(988\) 0 0
\(989\) 21.2073 0.674353
\(990\) −5.83528 −0.185457
\(991\) −45.8330 −1.45593 −0.727967 0.685612i \(-0.759535\pi\)
−0.727967 + 0.685612i \(0.759535\pi\)
\(992\) −47.8577 −1.51948
\(993\) −11.4712 −0.364026
\(994\) −28.6419 −0.908467
\(995\) 0.335481 0.0106355
\(996\) 3.82738 0.121275
\(997\) 54.6336 1.73026 0.865132 0.501544i \(-0.167235\pi\)
0.865132 + 0.501544i \(0.167235\pi\)
\(998\) −21.8004 −0.690081
\(999\) −1.00000 −0.0316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1083.2.a.l.1.2 3
3.2 odd 2 3249.2.a.y.1.2 3
19.7 even 3 57.2.e.b.49.2 yes 6
19.11 even 3 57.2.e.b.7.2 6
19.18 odd 2 1083.2.a.o.1.2 3
57.11 odd 6 171.2.f.b.64.2 6
57.26 odd 6 171.2.f.b.163.2 6
57.56 even 2 3249.2.a.t.1.2 3
76.7 odd 6 912.2.q.l.49.3 6
76.11 odd 6 912.2.q.l.577.3 6
228.11 even 6 2736.2.s.z.577.1 6
228.83 even 6 2736.2.s.z.1873.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.2.e.b.7.2 6 19.11 even 3
57.2.e.b.49.2 yes 6 19.7 even 3
171.2.f.b.64.2 6 57.11 odd 6
171.2.f.b.163.2 6 57.26 odd 6
912.2.q.l.49.3 6 76.7 odd 6
912.2.q.l.577.3 6 76.11 odd 6
1083.2.a.l.1.2 3 1.1 even 1 trivial
1083.2.a.o.1.2 3 19.18 odd 2
2736.2.s.z.577.1 6 228.11 even 6
2736.2.s.z.1873.1 6 228.83 even 6
3249.2.a.t.1.2 3 57.56 even 2
3249.2.a.y.1.2 3 3.2 odd 2