Properties

Label 8-1134e4-1.1-c1e4-0-14
Degree $8$
Conductor $1.654\times 10^{12}$
Sign $1$
Analytic cond. $6722.96$
Root an. cond. $3.00915$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4-s + 4·5-s + 2·7-s + 2·8-s − 8·10-s + 2·11-s + 6·13-s − 4·14-s − 4·16-s − 28·17-s − 4·19-s + 4·20-s − 4·22-s + 2·23-s + 11·25-s − 12·26-s + 2·28-s + 10·29-s − 6·31-s + 2·32-s + 56·34-s + 8·35-s + 8·37-s + 8·38-s + 8·40-s + 12·41-s + ⋯
L(s)  = 1  − 1.41·2-s + 1/2·4-s + 1.78·5-s + 0.755·7-s + 0.707·8-s − 2.52·10-s + 0.603·11-s + 1.66·13-s − 1.06·14-s − 16-s − 6.79·17-s − 0.917·19-s + 0.894·20-s − 0.852·22-s + 0.417·23-s + 11/5·25-s − 2.35·26-s + 0.377·28-s + 1.85·29-s − 1.07·31-s + 0.353·32-s + 9.60·34-s + 1.35·35-s + 1.31·37-s + 1.29·38-s + 1.26·40-s + 1.87·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{16} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{16} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{16} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(6722.96\)
Root analytic conductor: \(3.00915\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{16} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.992735316\)
\(L(\frac12)\) \(\approx\) \(1.992735316\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T + T^{2} )^{2} \)
3 \( 1 \)
7$C_2$ \( ( 1 - T + T^{2} )^{2} \)
good5$C_2$$\times$$C_2^2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 4 T + 11 T^{2} + 4 p T^{3} + p^{2} T^{4} ) \)
11$D_4\times C_2$ \( 1 - 2 T + 8 T^{2} + 52 T^{3} - 149 T^{4} + 52 p T^{5} + 8 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
13$C_2$$\times$$C_2^2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + 23 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \)
17$C_2$ \( ( 1 + 7 T + p T^{2} )^{4} \)
19$D_{4}$ \( ( 1 + 2 T + 36 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 2 T - 16 T^{2} + 52 T^{3} - 221 T^{4} + 52 p T^{5} - 16 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
29$C_2$$\times$$C_2^2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + 71 T^{2} + 10 p T^{3} + p^{2} T^{4} ) \)
31$D_4\times C_2$ \( 1 + 6 T - 8 T^{2} - 108 T^{3} - 141 T^{4} - 108 p T^{5} - 8 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
37$D_{4}$ \( ( 1 - 4 T + 3 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 - 12 T + 38 T^{2} - 288 T^{3} + 3651 T^{4} - 288 p T^{5} + 38 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 + 4 T - 62 T^{2} - 32 T^{3} + 3547 T^{4} - 32 p T^{5} - 62 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 6 T - 64 T^{2} - 36 T^{3} + 6099 T^{4} - 36 p T^{5} - 64 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
53$D_{4}$ \( ( 1 - 12 T + 130 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 + 2 T - 88 T^{2} - 52 T^{3} + 4747 T^{4} - 52 p T^{5} - 88 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 - 6 T - 47 T^{2} + 234 T^{3} + 972 T^{4} + 234 p T^{5} - 47 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 - 10 T - 56 T^{2} - 220 T^{3} + 13147 T^{4} - 220 p T^{5} - 56 p^{2} T^{6} - 10 p^{3} T^{7} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 + 20 T + 230 T^{2} + 20 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_{4}$ \( ( 1 - 20 T + 243 T^{2} - 20 p T^{3} + p^{2} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 + 6 T + 16 T^{2} - 828 T^{3} - 8685 T^{4} - 828 p T^{5} + 16 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
83$D_4\times C_2$ \( 1 - 2 T + 80 T^{2} + 484 T^{3} - 1445 T^{4} + 484 p T^{5} + 80 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 + 6 T + 139 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 + 8 T - 98 T^{2} - 256 T^{3} + 10627 T^{4} - 256 p T^{5} - 98 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.92448964616507388267743805429, −6.80506775421695516142253494543, −6.62858979995626503448401987891, −6.37099562595878266180189287326, −6.31089670180172799703222396171, −6.05988477447521291914017864234, −5.85967622638866360560991853017, −5.46795525338221720890159210045, −5.22599904277464858287026612790, −5.02029252943026081262982644510, −4.50254309061703550009047879704, −4.42175339431111310602425777761, −4.29312548658099977542858581654, −4.27597932065107134121208381388, −3.93823311093402333688561153616, −3.56303409935884354290170176006, −2.77467198021771906339500641098, −2.75358899345313692942159518059, −2.33026107097674820849612917685, −2.24851710181509969617105862254, −1.90393965717513917812347915940, −1.81852840755495423695993278953, −1.26416446183049235854952924082, −0.78077031696565700672146600386, −0.48399585579180060737933102351, 0.48399585579180060737933102351, 0.78077031696565700672146600386, 1.26416446183049235854952924082, 1.81852840755495423695993278953, 1.90393965717513917812347915940, 2.24851710181509969617105862254, 2.33026107097674820849612917685, 2.75358899345313692942159518059, 2.77467198021771906339500641098, 3.56303409935884354290170176006, 3.93823311093402333688561153616, 4.27597932065107134121208381388, 4.29312548658099977542858581654, 4.42175339431111310602425777761, 4.50254309061703550009047879704, 5.02029252943026081262982644510, 5.22599904277464858287026612790, 5.46795525338221720890159210045, 5.85967622638866360560991853017, 6.05988477447521291914017864234, 6.31089670180172799703222396171, 6.37099562595878266180189287326, 6.62858979995626503448401987891, 6.80506775421695516142253494543, 6.92448964616507388267743805429

Graph of the $Z$-function along the critical line