Properties

Label 1134.2.f.r.757.2
Level $1134$
Weight $2$
Character 1134.757
Analytic conductor $9.055$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(379,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.379");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 757.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1134.757
Dual form 1134.2.f.r.379.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(1.86603 - 3.23205i) q^{5} +(0.500000 + 0.866025i) q^{7} +1.00000 q^{8} -3.73205 q^{10} +(-2.09808 - 3.63397i) q^{11} +(-0.232051 + 0.401924i) q^{13} +(0.500000 - 0.866025i) q^{14} +(-0.500000 - 0.866025i) q^{16} -7.00000 q^{17} -2.73205 q^{19} +(1.86603 + 3.23205i) q^{20} +(-2.09808 + 3.63397i) q^{22} +(3.09808 - 5.36603i) q^{23} +(-4.46410 - 7.73205i) q^{25} +0.464102 q^{26} -1.00000 q^{28} +(4.23205 + 7.33013i) q^{29} +(1.09808 - 1.90192i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(3.50000 + 6.06218i) q^{34} +3.73205 q^{35} -6.66025 q^{37} +(1.36603 + 2.36603i) q^{38} +(1.86603 - 3.23205i) q^{40} +(4.73205 - 8.19615i) q^{41} +(-2.73205 - 4.73205i) q^{43} +4.19615 q^{44} -6.19615 q^{46} +(0.633975 + 1.09808i) q^{47} +(-0.500000 + 0.866025i) q^{49} +(-4.46410 + 7.73205i) q^{50} +(-0.232051 - 0.401924i) q^{52} +2.53590 q^{53} -15.6603 q^{55} +(0.500000 + 0.866025i) q^{56} +(4.23205 - 7.33013i) q^{58} +(-3.09808 + 5.36603i) q^{59} +(4.96410 + 8.59808i) q^{61} -2.19615 q^{62} +1.00000 q^{64} +(0.866025 + 1.50000i) q^{65} +(1.63397 - 2.83013i) q^{67} +(3.50000 - 6.06218i) q^{68} +(-1.86603 - 3.23205i) q^{70} -13.4641 q^{71} +11.7321 q^{73} +(3.33013 + 5.76795i) q^{74} +(1.36603 - 2.36603i) q^{76} +(2.09808 - 3.63397i) q^{77} +(-7.56218 - 13.0981i) q^{79} -3.73205 q^{80} -9.46410 q^{82} +(-7.29423 - 12.6340i) q^{83} +(-13.0622 + 22.6244i) q^{85} +(-2.73205 + 4.73205i) q^{86} +(-2.09808 - 3.63397i) q^{88} +3.92820 q^{89} -0.464102 q^{91} +(3.09808 + 5.36603i) q^{92} +(0.633975 - 1.09808i) q^{94} +(-5.09808 + 8.83013i) q^{95} +(1.46410 + 2.53590i) q^{97} +1.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{4} + 4 q^{5} + 2 q^{7} + 4 q^{8} - 8 q^{10} + 2 q^{11} + 6 q^{13} + 2 q^{14} - 2 q^{16} - 28 q^{17} - 4 q^{19} + 4 q^{20} + 2 q^{22} + 2 q^{23} - 4 q^{25} - 12 q^{26} - 4 q^{28} + 10 q^{29}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.86603 3.23205i 0.834512 1.44542i −0.0599153 0.998203i \(-0.519083\pi\)
0.894427 0.447214i \(-0.147584\pi\)
\(6\) 0 0
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −3.73205 −1.18018
\(11\) −2.09808 3.63397i −0.632594 1.09568i −0.987020 0.160600i \(-0.948657\pi\)
0.354426 0.935084i \(-0.384676\pi\)
\(12\) 0 0
\(13\) −0.232051 + 0.401924i −0.0643593 + 0.111474i −0.896410 0.443227i \(-0.853834\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 0.500000 0.866025i 0.133631 0.231455i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −7.00000 −1.69775 −0.848875 0.528594i \(-0.822719\pi\)
−0.848875 + 0.528594i \(0.822719\pi\)
\(18\) 0 0
\(19\) −2.73205 −0.626775 −0.313388 0.949625i \(-0.601464\pi\)
−0.313388 + 0.949625i \(0.601464\pi\)
\(20\) 1.86603 + 3.23205i 0.417256 + 0.722709i
\(21\) 0 0
\(22\) −2.09808 + 3.63397i −0.447311 + 0.774766i
\(23\) 3.09808 5.36603i 0.645994 1.11889i −0.338078 0.941118i \(-0.609777\pi\)
0.984071 0.177775i \(-0.0568901\pi\)
\(24\) 0 0
\(25\) −4.46410 7.73205i −0.892820 1.54641i
\(26\) 0.464102 0.0910178
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) 4.23205 + 7.33013i 0.785872 + 1.36117i 0.928477 + 0.371391i \(0.121119\pi\)
−0.142605 + 0.989780i \(0.545548\pi\)
\(30\) 0 0
\(31\) 1.09808 1.90192i 0.197220 0.341596i −0.750406 0.660977i \(-0.770142\pi\)
0.947626 + 0.319382i \(0.103475\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 3.50000 + 6.06218i 0.600245 + 1.03965i
\(35\) 3.73205 0.630832
\(36\) 0 0
\(37\) −6.66025 −1.09494 −0.547470 0.836826i \(-0.684409\pi\)
−0.547470 + 0.836826i \(0.684409\pi\)
\(38\) 1.36603 + 2.36603i 0.221599 + 0.383820i
\(39\) 0 0
\(40\) 1.86603 3.23205i 0.295045 0.511032i
\(41\) 4.73205 8.19615i 0.739022 1.28002i −0.213914 0.976853i \(-0.568621\pi\)
0.952936 0.303171i \(-0.0980455\pi\)
\(42\) 0 0
\(43\) −2.73205 4.73205i −0.416634 0.721631i 0.578965 0.815353i \(-0.303457\pi\)
−0.995598 + 0.0937217i \(0.970124\pi\)
\(44\) 4.19615 0.632594
\(45\) 0 0
\(46\) −6.19615 −0.913573
\(47\) 0.633975 + 1.09808i 0.0924747 + 0.160171i 0.908552 0.417772i \(-0.137189\pi\)
−0.816077 + 0.577943i \(0.803856\pi\)
\(48\) 0 0
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) −4.46410 + 7.73205i −0.631319 + 1.09348i
\(51\) 0 0
\(52\) −0.232051 0.401924i −0.0321797 0.0557368i
\(53\) 2.53590 0.348332 0.174166 0.984716i \(-0.444277\pi\)
0.174166 + 0.984716i \(0.444277\pi\)
\(54\) 0 0
\(55\) −15.6603 −2.11163
\(56\) 0.500000 + 0.866025i 0.0668153 + 0.115728i
\(57\) 0 0
\(58\) 4.23205 7.33013i 0.555695 0.962493i
\(59\) −3.09808 + 5.36603i −0.403335 + 0.698597i −0.994126 0.108228i \(-0.965482\pi\)
0.590791 + 0.806825i \(0.298816\pi\)
\(60\) 0 0
\(61\) 4.96410 + 8.59808i 0.635588 + 1.10087i 0.986390 + 0.164421i \(0.0525756\pi\)
−0.350802 + 0.936450i \(0.614091\pi\)
\(62\) −2.19615 −0.278912
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.866025 + 1.50000i 0.107417 + 0.186052i
\(66\) 0 0
\(67\) 1.63397 2.83013i 0.199622 0.345755i −0.748784 0.662814i \(-0.769362\pi\)
0.948406 + 0.317059i \(0.102695\pi\)
\(68\) 3.50000 6.06218i 0.424437 0.735147i
\(69\) 0 0
\(70\) −1.86603 3.23205i −0.223033 0.386304i
\(71\) −13.4641 −1.59789 −0.798947 0.601401i \(-0.794609\pi\)
−0.798947 + 0.601401i \(0.794609\pi\)
\(72\) 0 0
\(73\) 11.7321 1.37313 0.686566 0.727067i \(-0.259117\pi\)
0.686566 + 0.727067i \(0.259117\pi\)
\(74\) 3.33013 + 5.76795i 0.387119 + 0.670510i
\(75\) 0 0
\(76\) 1.36603 2.36603i 0.156694 0.271402i
\(77\) 2.09808 3.63397i 0.239098 0.414130i
\(78\) 0 0
\(79\) −7.56218 13.0981i −0.850811 1.47365i −0.880477 0.474089i \(-0.842778\pi\)
0.0296655 0.999560i \(-0.490556\pi\)
\(80\) −3.73205 −0.417256
\(81\) 0 0
\(82\) −9.46410 −1.04514
\(83\) −7.29423 12.6340i −0.800646 1.38676i −0.919192 0.393810i \(-0.871157\pi\)
0.118546 0.992949i \(-0.462177\pi\)
\(84\) 0 0
\(85\) −13.0622 + 22.6244i −1.41679 + 2.45396i
\(86\) −2.73205 + 4.73205i −0.294605 + 0.510270i
\(87\) 0 0
\(88\) −2.09808 3.63397i −0.223656 0.387383i
\(89\) 3.92820 0.416389 0.208194 0.978087i \(-0.433241\pi\)
0.208194 + 0.978087i \(0.433241\pi\)
\(90\) 0 0
\(91\) −0.464102 −0.0486511
\(92\) 3.09808 + 5.36603i 0.322997 + 0.559447i
\(93\) 0 0
\(94\) 0.633975 1.09808i 0.0653895 0.113258i
\(95\) −5.09808 + 8.83013i −0.523052 + 0.905952i
\(96\) 0 0
\(97\) 1.46410 + 2.53590i 0.148657 + 0.257481i 0.930731 0.365704i \(-0.119172\pi\)
−0.782074 + 0.623185i \(0.785838\pi\)
\(98\) 1.00000 0.101015
\(99\) 0 0
\(100\) 8.92820 0.892820
\(101\) −2.46410 4.26795i −0.245187 0.424677i 0.716997 0.697076i \(-0.245516\pi\)
−0.962184 + 0.272399i \(0.912183\pi\)
\(102\) 0 0
\(103\) −6.19615 + 10.7321i −0.610525 + 1.05746i 0.380627 + 0.924729i \(0.375708\pi\)
−0.991152 + 0.132732i \(0.957625\pi\)
\(104\) −0.232051 + 0.401924i −0.0227545 + 0.0394119i
\(105\) 0 0
\(106\) −1.26795 2.19615i −0.123154 0.213309i
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −7.19615 −0.689266 −0.344633 0.938737i \(-0.611997\pi\)
−0.344633 + 0.938737i \(0.611997\pi\)
\(110\) 7.83013 + 13.5622i 0.746573 + 1.29310i
\(111\) 0 0
\(112\) 0.500000 0.866025i 0.0472456 0.0818317i
\(113\) −1.13397 + 1.96410i −0.106675 + 0.184767i −0.914421 0.404763i \(-0.867354\pi\)
0.807746 + 0.589531i \(0.200687\pi\)
\(114\) 0 0
\(115\) −11.5622 20.0263i −1.07818 1.86746i
\(116\) −8.46410 −0.785872
\(117\) 0 0
\(118\) 6.19615 0.570402
\(119\) −3.50000 6.06218i −0.320844 0.555719i
\(120\) 0 0
\(121\) −3.30385 + 5.72243i −0.300350 + 0.520221i
\(122\) 4.96410 8.59808i 0.449429 0.778433i
\(123\) 0 0
\(124\) 1.09808 + 1.90192i 0.0986102 + 0.170798i
\(125\) −14.6603 −1.31125
\(126\) 0 0
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 0.866025 1.50000i 0.0759555 0.131559i
\(131\) 8.73205 15.1244i 0.762923 1.32142i −0.178415 0.983955i \(-0.557097\pi\)
0.941338 0.337466i \(-0.109570\pi\)
\(132\) 0 0
\(133\) −1.36603 2.36603i −0.118449 0.205160i
\(134\) −3.26795 −0.282308
\(135\) 0 0
\(136\) −7.00000 −0.600245
\(137\) −5.86603 10.1603i −0.501168 0.868049i −0.999999 0.00134965i \(-0.999570\pi\)
0.498831 0.866699i \(-0.333763\pi\)
\(138\) 0 0
\(139\) 3.36603 5.83013i 0.285503 0.494505i −0.687228 0.726441i \(-0.741173\pi\)
0.972731 + 0.231937i \(0.0745062\pi\)
\(140\) −1.86603 + 3.23205i −0.157708 + 0.273158i
\(141\) 0 0
\(142\) 6.73205 + 11.6603i 0.564941 + 0.978507i
\(143\) 1.94744 0.162853
\(144\) 0 0
\(145\) 31.5885 2.62328
\(146\) −5.86603 10.1603i −0.485476 0.840869i
\(147\) 0 0
\(148\) 3.33013 5.76795i 0.273735 0.474123i
\(149\) 4.50000 7.79423i 0.368654 0.638528i −0.620701 0.784047i \(-0.713152\pi\)
0.989355 + 0.145519i \(0.0464853\pi\)
\(150\) 0 0
\(151\) 8.09808 + 14.0263i 0.659012 + 1.14144i 0.980872 + 0.194655i \(0.0623587\pi\)
−0.321860 + 0.946787i \(0.604308\pi\)
\(152\) −2.73205 −0.221599
\(153\) 0 0
\(154\) −4.19615 −0.338136
\(155\) −4.09808 7.09808i −0.329165 0.570131i
\(156\) 0 0
\(157\) 0.500000 0.866025i 0.0399043 0.0691164i −0.845383 0.534160i \(-0.820628\pi\)
0.885288 + 0.465044i \(0.153961\pi\)
\(158\) −7.56218 + 13.0981i −0.601615 + 1.04203i
\(159\) 0 0
\(160\) 1.86603 + 3.23205i 0.147522 + 0.255516i
\(161\) 6.19615 0.488325
\(162\) 0 0
\(163\) −6.53590 −0.511931 −0.255966 0.966686i \(-0.582393\pi\)
−0.255966 + 0.966686i \(0.582393\pi\)
\(164\) 4.73205 + 8.19615i 0.369511 + 0.640012i
\(165\) 0 0
\(166\) −7.29423 + 12.6340i −0.566142 + 0.980587i
\(167\) −6.09808 + 10.5622i −0.471883 + 0.817326i −0.999482 0.0321676i \(-0.989759\pi\)
0.527599 + 0.849493i \(0.323092\pi\)
\(168\) 0 0
\(169\) 6.39230 + 11.0718i 0.491716 + 0.851677i
\(170\) 26.1244 2.00365
\(171\) 0 0
\(172\) 5.46410 0.416634
\(173\) 4.86603 + 8.42820i 0.369957 + 0.640784i 0.989558 0.144132i \(-0.0460391\pi\)
−0.619601 + 0.784917i \(0.712706\pi\)
\(174\) 0 0
\(175\) 4.46410 7.73205i 0.337454 0.584488i
\(176\) −2.09808 + 3.63397i −0.158148 + 0.273921i
\(177\) 0 0
\(178\) −1.96410 3.40192i −0.147216 0.254985i
\(179\) −8.19615 −0.612609 −0.306305 0.951934i \(-0.599093\pi\)
−0.306305 + 0.951934i \(0.599093\pi\)
\(180\) 0 0
\(181\) 4.39230 0.326477 0.163239 0.986587i \(-0.447806\pi\)
0.163239 + 0.986587i \(0.447806\pi\)
\(182\) 0.232051 + 0.401924i 0.0172008 + 0.0297926i
\(183\) 0 0
\(184\) 3.09808 5.36603i 0.228393 0.395589i
\(185\) −12.4282 + 21.5263i −0.913740 + 1.58264i
\(186\) 0 0
\(187\) 14.6865 + 25.4378i 1.07399 + 1.86020i
\(188\) −1.26795 −0.0924747
\(189\) 0 0
\(190\) 10.1962 0.739707
\(191\) 5.83013 + 10.0981i 0.421853 + 0.730671i 0.996121 0.0879965i \(-0.0280464\pi\)
−0.574268 + 0.818668i \(0.694713\pi\)
\(192\) 0 0
\(193\) 4.42820 7.66987i 0.318749 0.552090i −0.661478 0.749964i \(-0.730071\pi\)
0.980227 + 0.197875i \(0.0634039\pi\)
\(194\) 1.46410 2.53590i 0.105116 0.182067i
\(195\) 0 0
\(196\) −0.500000 0.866025i −0.0357143 0.0618590i
\(197\) 25.7846 1.83708 0.918539 0.395331i \(-0.129370\pi\)
0.918539 + 0.395331i \(0.129370\pi\)
\(198\) 0 0
\(199\) 5.12436 0.363256 0.181628 0.983367i \(-0.441863\pi\)
0.181628 + 0.983367i \(0.441863\pi\)
\(200\) −4.46410 7.73205i −0.315660 0.546739i
\(201\) 0 0
\(202\) −2.46410 + 4.26795i −0.173374 + 0.300292i
\(203\) −4.23205 + 7.33013i −0.297032 + 0.514474i
\(204\) 0 0
\(205\) −17.6603 30.5885i −1.23345 2.13639i
\(206\) 12.3923 0.863413
\(207\) 0 0
\(208\) 0.464102 0.0321797
\(209\) 5.73205 + 9.92820i 0.396494 + 0.686748i
\(210\) 0 0
\(211\) 10.3660 17.9545i 0.713627 1.23604i −0.249860 0.968282i \(-0.580385\pi\)
0.963487 0.267756i \(-0.0862820\pi\)
\(212\) −1.26795 + 2.19615i −0.0870831 + 0.150832i
\(213\) 0 0
\(214\) 0 0
\(215\) −20.3923 −1.39074
\(216\) 0 0
\(217\) 2.19615 0.149085
\(218\) 3.59808 + 6.23205i 0.243692 + 0.422088i
\(219\) 0 0
\(220\) 7.83013 13.5622i 0.527907 0.914362i
\(221\) 1.62436 2.81347i 0.109266 0.189254i
\(222\) 0 0
\(223\) 9.26795 + 16.0526i 0.620628 + 1.07496i 0.989369 + 0.145427i \(0.0464555\pi\)
−0.368741 + 0.929532i \(0.620211\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 2.26795 0.150862
\(227\) −2.53590 4.39230i −0.168313 0.291528i 0.769514 0.638631i \(-0.220499\pi\)
−0.937827 + 0.347103i \(0.887165\pi\)
\(228\) 0 0
\(229\) −2.23205 + 3.86603i −0.147498 + 0.255474i −0.930302 0.366794i \(-0.880455\pi\)
0.782804 + 0.622268i \(0.213789\pi\)
\(230\) −11.5622 + 20.0263i −0.762387 + 1.32049i
\(231\) 0 0
\(232\) 4.23205 + 7.33013i 0.277848 + 0.481246i
\(233\) 13.1962 0.864509 0.432254 0.901752i \(-0.357718\pi\)
0.432254 + 0.901752i \(0.357718\pi\)
\(234\) 0 0
\(235\) 4.73205 0.308685
\(236\) −3.09808 5.36603i −0.201668 0.349299i
\(237\) 0 0
\(238\) −3.50000 + 6.06218i −0.226871 + 0.392953i
\(239\) 14.0263 24.2942i 0.907285 1.57146i 0.0894638 0.995990i \(-0.471485\pi\)
0.817821 0.575473i \(-0.195182\pi\)
\(240\) 0 0
\(241\) 8.86603 + 15.3564i 0.571111 + 0.989193i 0.996452 + 0.0841601i \(0.0268207\pi\)
−0.425341 + 0.905033i \(0.639846\pi\)
\(242\) 6.60770 0.424759
\(243\) 0 0
\(244\) −9.92820 −0.635588
\(245\) 1.86603 + 3.23205i 0.119216 + 0.206488i
\(246\) 0 0
\(247\) 0.633975 1.09808i 0.0403388 0.0698689i
\(248\) 1.09808 1.90192i 0.0697279 0.120772i
\(249\) 0 0
\(250\) 7.33013 + 12.6962i 0.463598 + 0.802975i
\(251\) −16.0526 −1.01323 −0.506614 0.862173i \(-0.669103\pi\)
−0.506614 + 0.862173i \(0.669103\pi\)
\(252\) 0 0
\(253\) −26.0000 −1.63461
\(254\) −6.00000 10.3923i −0.376473 0.652071i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −0.232051 + 0.401924i −0.0144749 + 0.0250713i −0.873172 0.487412i \(-0.837941\pi\)
0.858697 + 0.512483i \(0.171274\pi\)
\(258\) 0 0
\(259\) −3.33013 5.76795i −0.206924 0.358403i
\(260\) −1.73205 −0.107417
\(261\) 0 0
\(262\) −17.4641 −1.07894
\(263\) −11.8301 20.4904i −0.729477 1.26349i −0.957105 0.289743i \(-0.906430\pi\)
0.227628 0.973748i \(-0.426903\pi\)
\(264\) 0 0
\(265\) 4.73205 8.19615i 0.290688 0.503486i
\(266\) −1.36603 + 2.36603i −0.0837564 + 0.145070i
\(267\) 0 0
\(268\) 1.63397 + 2.83013i 0.0998109 + 0.172878i
\(269\) 25.5885 1.56016 0.780078 0.625682i \(-0.215179\pi\)
0.780078 + 0.625682i \(0.215179\pi\)
\(270\) 0 0
\(271\) 25.5167 1.55003 0.775013 0.631945i \(-0.217743\pi\)
0.775013 + 0.631945i \(0.217743\pi\)
\(272\) 3.50000 + 6.06218i 0.212219 + 0.367574i
\(273\) 0 0
\(274\) −5.86603 + 10.1603i −0.354380 + 0.613803i
\(275\) −18.7321 + 32.4449i −1.12959 + 1.95650i
\(276\) 0 0
\(277\) −11.3923 19.7321i −0.684497 1.18558i −0.973595 0.228284i \(-0.926688\pi\)
0.289097 0.957300i \(-0.406645\pi\)
\(278\) −6.73205 −0.403762
\(279\) 0 0
\(280\) 3.73205 0.223033
\(281\) −1.40192 2.42820i −0.0836318 0.144854i 0.821176 0.570676i \(-0.193319\pi\)
−0.904807 + 0.425821i \(0.859985\pi\)
\(282\) 0 0
\(283\) 9.66025 16.7321i 0.574242 0.994617i −0.421881 0.906651i \(-0.638630\pi\)
0.996123 0.0879660i \(-0.0280367\pi\)
\(284\) 6.73205 11.6603i 0.399474 0.691909i
\(285\) 0 0
\(286\) −0.973721 1.68653i −0.0575773 0.0997268i
\(287\) 9.46410 0.558648
\(288\) 0 0
\(289\) 32.0000 1.88235
\(290\) −15.7942 27.3564i −0.927469 1.60642i
\(291\) 0 0
\(292\) −5.86603 + 10.1603i −0.343283 + 0.594584i
\(293\) 10.3301 17.8923i 0.603492 1.04528i −0.388795 0.921324i \(-0.627109\pi\)
0.992288 0.123955i \(-0.0395580\pi\)
\(294\) 0 0
\(295\) 11.5622 + 20.0263i 0.673176 + 1.16598i
\(296\) −6.66025 −0.387119
\(297\) 0 0
\(298\) −9.00000 −0.521356
\(299\) 1.43782 + 2.49038i 0.0831514 + 0.144022i
\(300\) 0 0
\(301\) 2.73205 4.73205i 0.157473 0.272751i
\(302\) 8.09808 14.0263i 0.465992 0.807122i
\(303\) 0 0
\(304\) 1.36603 + 2.36603i 0.0783469 + 0.135701i
\(305\) 37.0526 2.12162
\(306\) 0 0
\(307\) 5.85641 0.334243 0.167121 0.985936i \(-0.446553\pi\)
0.167121 + 0.985936i \(0.446553\pi\)
\(308\) 2.09808 + 3.63397i 0.119549 + 0.207065i
\(309\) 0 0
\(310\) −4.09808 + 7.09808i −0.232755 + 0.403144i
\(311\) −0.0980762 + 0.169873i −0.00556139 + 0.00963261i −0.868793 0.495176i \(-0.835104\pi\)
0.863231 + 0.504809i \(0.168437\pi\)
\(312\) 0 0
\(313\) 2.79423 + 4.83975i 0.157939 + 0.273559i 0.934125 0.356945i \(-0.116182\pi\)
−0.776186 + 0.630504i \(0.782848\pi\)
\(314\) −1.00000 −0.0564333
\(315\) 0 0
\(316\) 15.1244 0.850811
\(317\) −5.30385 9.18653i −0.297894 0.515967i 0.677760 0.735283i \(-0.262951\pi\)
−0.975654 + 0.219316i \(0.929617\pi\)
\(318\) 0 0
\(319\) 17.7583 30.7583i 0.994276 1.72214i
\(320\) 1.86603 3.23205i 0.104314 0.180677i
\(321\) 0 0
\(322\) −3.09808 5.36603i −0.172649 0.299037i
\(323\) 19.1244 1.06411
\(324\) 0 0
\(325\) 4.14359 0.229845
\(326\) 3.26795 + 5.66025i 0.180995 + 0.313492i
\(327\) 0 0
\(328\) 4.73205 8.19615i 0.261284 0.452557i
\(329\) −0.633975 + 1.09808i −0.0349522 + 0.0605389i
\(330\) 0 0
\(331\) 4.19615 + 7.26795i 0.230641 + 0.399483i 0.957997 0.286778i \(-0.0925842\pi\)
−0.727356 + 0.686261i \(0.759251\pi\)
\(332\) 14.5885 0.800646
\(333\) 0 0
\(334\) 12.1962 0.667344
\(335\) −6.09808 10.5622i −0.333173 0.577073i
\(336\) 0 0
\(337\) −2.19615 + 3.80385i −0.119632 + 0.207209i −0.919622 0.392805i \(-0.871505\pi\)
0.799990 + 0.600014i \(0.204838\pi\)
\(338\) 6.39230 11.0718i 0.347696 0.602226i
\(339\) 0 0
\(340\) −13.0622 22.6244i −0.708396 1.22698i
\(341\) −9.21539 −0.499041
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) −2.73205 4.73205i −0.147302 0.255135i
\(345\) 0 0
\(346\) 4.86603 8.42820i 0.261599 0.453103i
\(347\) 7.26795 12.5885i 0.390164 0.675784i −0.602307 0.798265i \(-0.705752\pi\)
0.992471 + 0.122481i \(0.0390850\pi\)
\(348\) 0 0
\(349\) 2.73205 + 4.73205i 0.146243 + 0.253301i 0.929836 0.367974i \(-0.119948\pi\)
−0.783593 + 0.621275i \(0.786615\pi\)
\(350\) −8.92820 −0.477233
\(351\) 0 0
\(352\) 4.19615 0.223656
\(353\) −9.00000 15.5885i −0.479022 0.829690i 0.520689 0.853746i \(-0.325675\pi\)
−0.999711 + 0.0240566i \(0.992342\pi\)
\(354\) 0 0
\(355\) −25.1244 + 43.5167i −1.33346 + 2.30962i
\(356\) −1.96410 + 3.40192i −0.104097 + 0.180302i
\(357\) 0 0
\(358\) 4.09808 + 7.09808i 0.216590 + 0.375145i
\(359\) −2.92820 −0.154545 −0.0772723 0.997010i \(-0.524621\pi\)
−0.0772723 + 0.997010i \(0.524621\pi\)
\(360\) 0 0
\(361\) −11.5359 −0.607153
\(362\) −2.19615 3.80385i −0.115427 0.199926i
\(363\) 0 0
\(364\) 0.232051 0.401924i 0.0121628 0.0210665i
\(365\) 21.8923 37.9186i 1.14590 1.98475i
\(366\) 0 0
\(367\) 6.56218 + 11.3660i 0.342543 + 0.593302i 0.984904 0.173100i \(-0.0553785\pi\)
−0.642361 + 0.766402i \(0.722045\pi\)
\(368\) −6.19615 −0.322997
\(369\) 0 0
\(370\) 24.8564 1.29222
\(371\) 1.26795 + 2.19615i 0.0658286 + 0.114019i
\(372\) 0 0
\(373\) 16.9282 29.3205i 0.876509 1.51816i 0.0213627 0.999772i \(-0.493200\pi\)
0.855146 0.518387i \(-0.173467\pi\)
\(374\) 14.6865 25.4378i 0.759423 1.31536i
\(375\) 0 0
\(376\) 0.633975 + 1.09808i 0.0326947 + 0.0566290i
\(377\) −3.92820 −0.202313
\(378\) 0 0
\(379\) 17.5167 0.899770 0.449885 0.893086i \(-0.351465\pi\)
0.449885 + 0.893086i \(0.351465\pi\)
\(380\) −5.09808 8.83013i −0.261526 0.452976i
\(381\) 0 0
\(382\) 5.83013 10.0981i 0.298295 0.516663i
\(383\) −17.8564 + 30.9282i −0.912420 + 1.58036i −0.101784 + 0.994807i \(0.532455\pi\)
−0.810636 + 0.585551i \(0.800878\pi\)
\(384\) 0 0
\(385\) −7.83013 13.5622i −0.399060 0.691193i
\(386\) −8.85641 −0.450779
\(387\) 0 0
\(388\) −2.92820 −0.148657
\(389\) −3.26795 5.66025i −0.165692 0.286986i 0.771209 0.636582i \(-0.219652\pi\)
−0.936901 + 0.349596i \(0.886319\pi\)
\(390\) 0 0
\(391\) −21.6865 + 37.5622i −1.09674 + 1.89960i
\(392\) −0.500000 + 0.866025i −0.0252538 + 0.0437409i
\(393\) 0 0
\(394\) −12.8923 22.3301i −0.649505 1.12498i
\(395\) −56.4449 −2.84005
\(396\) 0 0
\(397\) −21.0000 −1.05396 −0.526980 0.849878i \(-0.676676\pi\)
−0.526980 + 0.849878i \(0.676676\pi\)
\(398\) −2.56218 4.43782i −0.128430 0.222448i
\(399\) 0 0
\(400\) −4.46410 + 7.73205i −0.223205 + 0.386603i
\(401\) −17.2583 + 29.8923i −0.861840 + 1.49275i 0.00831121 + 0.999965i \(0.497354\pi\)
−0.870151 + 0.492785i \(0.835979\pi\)
\(402\) 0 0
\(403\) 0.509619 + 0.882686i 0.0253859 + 0.0439697i
\(404\) 4.92820 0.245187
\(405\) 0 0
\(406\) 8.46410 0.420066
\(407\) 13.9737 + 24.2032i 0.692652 + 1.19971i
\(408\) 0 0
\(409\) −17.3301 + 30.0167i −0.856920 + 1.48423i 0.0179330 + 0.999839i \(0.494291\pi\)
−0.874853 + 0.484389i \(0.839042\pi\)
\(410\) −17.6603 + 30.5885i −0.872178 + 1.51066i
\(411\) 0 0
\(412\) −6.19615 10.7321i −0.305263 0.528730i
\(413\) −6.19615 −0.304893
\(414\) 0 0
\(415\) −54.4449 −2.67259
\(416\) −0.232051 0.401924i −0.0113772 0.0197059i
\(417\) 0 0
\(418\) 5.73205 9.92820i 0.280364 0.485604i
\(419\) −1.26795 + 2.19615i −0.0619434 + 0.107289i −0.895334 0.445395i \(-0.853063\pi\)
0.833391 + 0.552684i \(0.186396\pi\)
\(420\) 0 0
\(421\) 12.0622 + 20.8923i 0.587875 + 1.01823i 0.994510 + 0.104638i \(0.0333685\pi\)
−0.406636 + 0.913590i \(0.633298\pi\)
\(422\) −20.7321 −1.00922
\(423\) 0 0
\(424\) 2.53590 0.123154
\(425\) 31.2487 + 54.1244i 1.51579 + 2.62542i
\(426\) 0 0
\(427\) −4.96410 + 8.59808i −0.240230 + 0.416090i
\(428\) 0 0
\(429\) 0 0
\(430\) 10.1962 + 17.6603i 0.491702 + 0.851653i
\(431\) 21.4641 1.03389 0.516945 0.856019i \(-0.327069\pi\)
0.516945 + 0.856019i \(0.327069\pi\)
\(432\) 0 0
\(433\) 12.2679 0.589560 0.294780 0.955565i \(-0.404754\pi\)
0.294780 + 0.955565i \(0.404754\pi\)
\(434\) −1.09808 1.90192i −0.0527093 0.0912953i
\(435\) 0 0
\(436\) 3.59808 6.23205i 0.172317 0.298461i
\(437\) −8.46410 + 14.6603i −0.404893 + 0.701295i
\(438\) 0 0
\(439\) 5.66025 + 9.80385i 0.270149 + 0.467912i 0.968900 0.247453i \(-0.0795936\pi\)
−0.698751 + 0.715365i \(0.746260\pi\)
\(440\) −15.6603 −0.746573
\(441\) 0 0
\(442\) −3.24871 −0.154525
\(443\) −9.36603 16.2224i −0.444993 0.770751i 0.553058 0.833142i \(-0.313461\pi\)
−0.998052 + 0.0623915i \(0.980127\pi\)
\(444\) 0 0
\(445\) 7.33013 12.6962i 0.347481 0.601855i
\(446\) 9.26795 16.0526i 0.438850 0.760111i
\(447\) 0 0
\(448\) 0.500000 + 0.866025i 0.0236228 + 0.0409159i
\(449\) 11.8564 0.559538 0.279769 0.960067i \(-0.409742\pi\)
0.279769 + 0.960067i \(0.409742\pi\)
\(450\) 0 0
\(451\) −39.7128 −1.87000
\(452\) −1.13397 1.96410i −0.0533377 0.0923836i
\(453\) 0 0
\(454\) −2.53590 + 4.39230i −0.119016 + 0.206141i
\(455\) −0.866025 + 1.50000i −0.0405999 + 0.0703211i
\(456\) 0 0
\(457\) −10.4282 18.0622i −0.487811 0.844913i 0.512091 0.858931i \(-0.328871\pi\)
−0.999902 + 0.0140182i \(0.995538\pi\)
\(458\) 4.46410 0.208594
\(459\) 0 0
\(460\) 23.1244 1.07818
\(461\) 17.3923 + 30.1244i 0.810040 + 1.40303i 0.912835 + 0.408329i \(0.133888\pi\)
−0.102795 + 0.994703i \(0.532778\pi\)
\(462\) 0 0
\(463\) 16.2942 28.2224i 0.757257 1.31161i −0.186987 0.982362i \(-0.559872\pi\)
0.944244 0.329245i \(-0.106794\pi\)
\(464\) 4.23205 7.33013i 0.196468 0.340293i
\(465\) 0 0
\(466\) −6.59808 11.4282i −0.305650 0.529401i
\(467\) −14.5885 −0.675073 −0.337537 0.941312i \(-0.609594\pi\)
−0.337537 + 0.941312i \(0.609594\pi\)
\(468\) 0 0
\(469\) 3.26795 0.150900
\(470\) −2.36603 4.09808i −0.109137 0.189030i
\(471\) 0 0
\(472\) −3.09808 + 5.36603i −0.142601 + 0.246991i
\(473\) −11.4641 + 19.8564i −0.527120 + 0.912999i
\(474\) 0 0
\(475\) 12.1962 + 21.1244i 0.559598 + 0.969252i
\(476\) 7.00000 0.320844
\(477\) 0 0
\(478\) −28.0526 −1.28309
\(479\) 11.7583 + 20.3660i 0.537252 + 0.930547i 0.999051 + 0.0435628i \(0.0138709\pi\)
−0.461799 + 0.886985i \(0.652796\pi\)
\(480\) 0 0
\(481\) 1.54552 2.67691i 0.0704695 0.122057i
\(482\) 8.86603 15.3564i 0.403836 0.699465i
\(483\) 0 0
\(484\) −3.30385 5.72243i −0.150175 0.260111i
\(485\) 10.9282 0.496224
\(486\) 0 0
\(487\) −28.5885 −1.29547 −0.647733 0.761867i \(-0.724283\pi\)
−0.647733 + 0.761867i \(0.724283\pi\)
\(488\) 4.96410 + 8.59808i 0.224714 + 0.389217i
\(489\) 0 0
\(490\) 1.86603 3.23205i 0.0842984 0.146009i
\(491\) 16.7321 28.9808i 0.755107 1.30788i −0.190214 0.981743i \(-0.560918\pi\)
0.945321 0.326141i \(-0.105748\pi\)
\(492\) 0 0
\(493\) −29.6244 51.3109i −1.33421 2.31093i
\(494\) −1.26795 −0.0570477
\(495\) 0 0
\(496\) −2.19615 −0.0986102
\(497\) −6.73205 11.6603i −0.301974 0.523034i
\(498\) 0 0
\(499\) −15.0981 + 26.1506i −0.675883 + 1.17066i 0.300327 + 0.953836i \(0.402904\pi\)
−0.976210 + 0.216827i \(0.930429\pi\)
\(500\) 7.33013 12.6962i 0.327813 0.567789i
\(501\) 0 0
\(502\) 8.02628 + 13.9019i 0.358230 + 0.620473i
\(503\) −1.94744 −0.0868321 −0.0434161 0.999057i \(-0.513824\pi\)
−0.0434161 + 0.999057i \(0.513824\pi\)
\(504\) 0 0
\(505\) −18.3923 −0.818447
\(506\) 13.0000 + 22.5167i 0.577920 + 1.00099i
\(507\) 0 0
\(508\) −6.00000 + 10.3923i −0.266207 + 0.461084i
\(509\) 2.07180 3.58846i 0.0918308 0.159056i −0.816451 0.577415i \(-0.804061\pi\)
0.908282 + 0.418360i \(0.137395\pi\)
\(510\) 0 0
\(511\) 5.86603 + 10.1603i 0.259498 + 0.449463i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 0.464102 0.0204706
\(515\) 23.1244 + 40.0526i 1.01898 + 1.76493i
\(516\) 0 0
\(517\) 2.66025 4.60770i 0.116998 0.202646i
\(518\) −3.33013 + 5.76795i −0.146317 + 0.253429i
\(519\) 0 0
\(520\) 0.866025 + 1.50000i 0.0379777 + 0.0657794i
\(521\) 30.0000 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(522\) 0 0
\(523\) −29.1769 −1.27582 −0.637909 0.770112i \(-0.720200\pi\)
−0.637909 + 0.770112i \(0.720200\pi\)
\(524\) 8.73205 + 15.1244i 0.381461 + 0.660711i
\(525\) 0 0
\(526\) −11.8301 + 20.4904i −0.515818 + 0.893423i
\(527\) −7.68653 + 13.3135i −0.334831 + 0.579944i
\(528\) 0 0
\(529\) −7.69615 13.3301i −0.334615 0.579571i
\(530\) −9.46410 −0.411094
\(531\) 0 0
\(532\) 2.73205 0.118449
\(533\) 2.19615 + 3.80385i 0.0951259 + 0.164763i
\(534\) 0 0
\(535\) 0 0
\(536\) 1.63397 2.83013i 0.0705770 0.122243i
\(537\) 0 0
\(538\) −12.7942 22.1603i −0.551598 0.955396i
\(539\) 4.19615 0.180741
\(540\) 0 0
\(541\) 20.6603 0.888254 0.444127 0.895964i \(-0.353514\pi\)
0.444127 + 0.895964i \(0.353514\pi\)
\(542\) −12.7583 22.0981i −0.548017 0.949194i
\(543\) 0 0
\(544\) 3.50000 6.06218i 0.150061 0.259914i
\(545\) −13.4282 + 23.2583i −0.575201 + 0.996277i
\(546\) 0 0
\(547\) 9.63397 + 16.6865i 0.411919 + 0.713465i 0.995100 0.0988779i \(-0.0315253\pi\)
−0.583181 + 0.812343i \(0.698192\pi\)
\(548\) 11.7321 0.501168
\(549\) 0 0
\(550\) 37.4641 1.59747
\(551\) −11.5622 20.0263i −0.492565 0.853148i
\(552\) 0 0
\(553\) 7.56218 13.0981i 0.321577 0.556987i
\(554\) −11.3923 + 19.7321i −0.484013 + 0.838335i
\(555\) 0 0
\(556\) 3.36603 + 5.83013i 0.142751 + 0.247252i
\(557\) −10.0718 −0.426756 −0.213378 0.976970i \(-0.568447\pi\)
−0.213378 + 0.976970i \(0.568447\pi\)
\(558\) 0 0
\(559\) 2.53590 0.107257
\(560\) −1.86603 3.23205i −0.0788540 0.136579i
\(561\) 0 0
\(562\) −1.40192 + 2.42820i −0.0591366 + 0.102428i
\(563\) −17.8564 + 30.9282i −0.752558 + 1.30347i 0.194022 + 0.980997i \(0.437847\pi\)
−0.946579 + 0.322471i \(0.895486\pi\)
\(564\) 0 0
\(565\) 4.23205 + 7.33013i 0.178044 + 0.308381i
\(566\) −19.3205 −0.812102
\(567\) 0 0
\(568\) −13.4641 −0.564941
\(569\) 6.40192 + 11.0885i 0.268383 + 0.464852i 0.968444 0.249230i \(-0.0801775\pi\)
−0.700062 + 0.714082i \(0.746844\pi\)
\(570\) 0 0
\(571\) 9.63397 16.6865i 0.403169 0.698310i −0.590937 0.806718i \(-0.701242\pi\)
0.994107 + 0.108408i \(0.0345752\pi\)
\(572\) −0.973721 + 1.68653i −0.0407133 + 0.0705175i
\(573\) 0 0
\(574\) −4.73205 8.19615i −0.197512 0.342101i
\(575\) −55.3205 −2.30702
\(576\) 0 0
\(577\) 7.33975 0.305558 0.152779 0.988260i \(-0.451178\pi\)
0.152779 + 0.988260i \(0.451178\pi\)
\(578\) −16.0000 27.7128i −0.665512 1.15270i
\(579\) 0 0
\(580\) −15.7942 + 27.3564i −0.655820 + 1.13591i
\(581\) 7.29423 12.6340i 0.302616 0.524146i
\(582\) 0 0
\(583\) −5.32051 9.21539i −0.220353 0.381662i
\(584\) 11.7321 0.485476
\(585\) 0 0
\(586\) −20.6603 −0.853467
\(587\) 5.63397 + 9.75833i 0.232539 + 0.402769i 0.958555 0.284909i \(-0.0919633\pi\)
−0.726016 + 0.687678i \(0.758630\pi\)
\(588\) 0 0
\(589\) −3.00000 + 5.19615i −0.123613 + 0.214104i
\(590\) 11.5622 20.0263i 0.476007 0.824469i
\(591\) 0 0
\(592\) 3.33013 + 5.76795i 0.136867 + 0.237061i
\(593\) −40.1769 −1.64987 −0.824934 0.565229i \(-0.808788\pi\)
−0.824934 + 0.565229i \(0.808788\pi\)
\(594\) 0 0
\(595\) −26.1244 −1.07099
\(596\) 4.50000 + 7.79423i 0.184327 + 0.319264i
\(597\) 0 0
\(598\) 1.43782 2.49038i 0.0587969 0.101839i
\(599\) 4.56218 7.90192i 0.186406 0.322864i −0.757644 0.652668i \(-0.773650\pi\)
0.944049 + 0.329805i \(0.106983\pi\)
\(600\) 0 0
\(601\) −4.40192 7.62436i −0.179558 0.311004i 0.762171 0.647376i \(-0.224133\pi\)
−0.941729 + 0.336372i \(0.890800\pi\)
\(602\) −5.46410 −0.222700
\(603\) 0 0
\(604\) −16.1962 −0.659012
\(605\) 12.3301 + 21.3564i 0.501291 + 0.868261i
\(606\) 0 0
\(607\) −3.29423 + 5.70577i −0.133709 + 0.231590i −0.925103 0.379715i \(-0.876022\pi\)
0.791395 + 0.611305i \(0.209355\pi\)
\(608\) 1.36603 2.36603i 0.0553996 0.0959550i
\(609\) 0 0
\(610\) −18.5263 32.0885i −0.750107 1.29922i
\(611\) −0.588457 −0.0238064
\(612\) 0 0
\(613\) −14.7846 −0.597145 −0.298572 0.954387i \(-0.596510\pi\)
−0.298572 + 0.954387i \(0.596510\pi\)
\(614\) −2.92820 5.07180i −0.118173 0.204681i
\(615\) 0 0
\(616\) 2.09808 3.63397i 0.0845339 0.146417i
\(617\) −19.9904 + 34.6244i −0.804782 + 1.39392i 0.111655 + 0.993747i \(0.464385\pi\)
−0.916438 + 0.400177i \(0.868949\pi\)
\(618\) 0 0
\(619\) −15.8564 27.4641i −0.637323 1.10388i −0.986018 0.166639i \(-0.946708\pi\)
0.348695 0.937236i \(-0.386625\pi\)
\(620\) 8.19615 0.329165
\(621\) 0 0
\(622\) 0.196152 0.00786500
\(623\) 1.96410 + 3.40192i 0.0786901 + 0.136295i
\(624\) 0 0
\(625\) −5.03590 + 8.72243i −0.201436 + 0.348897i
\(626\) 2.79423 4.83975i 0.111680 0.193435i
\(627\) 0 0
\(628\) 0.500000 + 0.866025i 0.0199522 + 0.0345582i
\(629\) 46.6218 1.85893
\(630\) 0 0
\(631\) 13.6603 0.543806 0.271903 0.962325i \(-0.412347\pi\)
0.271903 + 0.962325i \(0.412347\pi\)
\(632\) −7.56218 13.0981i −0.300807 0.521013i
\(633\) 0 0
\(634\) −5.30385 + 9.18653i −0.210643 + 0.364844i
\(635\) 22.3923 38.7846i 0.888612 1.53912i
\(636\) 0 0
\(637\) −0.232051 0.401924i −0.00919419 0.0159248i
\(638\) −35.5167 −1.40612
\(639\) 0 0
\(640\) −3.73205 −0.147522
\(641\) −9.72243 16.8397i −0.384013 0.665130i 0.607619 0.794229i \(-0.292125\pi\)
−0.991632 + 0.129099i \(0.958792\pi\)
\(642\) 0 0
\(643\) 20.2942 35.1506i 0.800326 1.38621i −0.119075 0.992885i \(-0.537993\pi\)
0.919401 0.393320i \(-0.128674\pi\)
\(644\) −3.09808 + 5.36603i −0.122081 + 0.211451i
\(645\) 0 0
\(646\) −9.56218 16.5622i −0.376219 0.651630i
\(647\) −16.3923 −0.644448 −0.322224 0.946663i \(-0.604430\pi\)
−0.322224 + 0.946663i \(0.604430\pi\)
\(648\) 0 0
\(649\) 26.0000 1.02059
\(650\) −2.07180 3.58846i −0.0812626 0.140751i
\(651\) 0 0
\(652\) 3.26795 5.66025i 0.127983 0.221673i
\(653\) 9.12436 15.8038i 0.357064 0.618452i −0.630405 0.776266i \(-0.717111\pi\)
0.987469 + 0.157814i \(0.0504446\pi\)
\(654\) 0 0
\(655\) −32.5885 56.4449i −1.27334 2.20548i
\(656\) −9.46410 −0.369511
\(657\) 0 0
\(658\) 1.26795 0.0494298
\(659\) −7.80385 13.5167i −0.303995 0.526534i 0.673042 0.739604i \(-0.264987\pi\)
−0.977037 + 0.213070i \(0.931654\pi\)
\(660\) 0 0
\(661\) −7.42820 + 12.8660i −0.288924 + 0.500430i −0.973553 0.228461i \(-0.926631\pi\)
0.684629 + 0.728891i \(0.259964\pi\)
\(662\) 4.19615 7.26795i 0.163088 0.282477i
\(663\) 0 0
\(664\) −7.29423 12.6340i −0.283071 0.490293i
\(665\) −10.1962 −0.395390
\(666\) 0 0
\(667\) 52.4449 2.03067
\(668\) −6.09808 10.5622i −0.235942 0.408663i
\(669\) 0 0
\(670\) −6.09808 + 10.5622i −0.235589 + 0.408053i
\(671\) 20.8301 36.0788i 0.804138 1.39281i
\(672\) 0 0
\(673\) −8.16025 14.1340i −0.314555 0.544825i 0.664788 0.747032i \(-0.268522\pi\)
−0.979343 + 0.202207i \(0.935189\pi\)
\(674\) 4.39230 0.169185
\(675\) 0 0
\(676\) −12.7846 −0.491716
\(677\) 18.0000 + 31.1769i 0.691796 + 1.19823i 0.971249 + 0.238067i \(0.0765137\pi\)
−0.279453 + 0.960159i \(0.590153\pi\)
\(678\) 0 0
\(679\) −1.46410 + 2.53590i −0.0561871 + 0.0973188i
\(680\) −13.0622 + 22.6244i −0.500912 + 0.867604i
\(681\) 0 0
\(682\) 4.60770 + 7.98076i 0.176438 + 0.305599i
\(683\) −25.8564 −0.989368 −0.494684 0.869073i \(-0.664716\pi\)
−0.494684 + 0.869073i \(0.664716\pi\)
\(684\) 0 0
\(685\) −43.7846 −1.67292
\(686\) 0.500000 + 0.866025i 0.0190901 + 0.0330650i
\(687\) 0 0
\(688\) −2.73205 + 4.73205i −0.104158 + 0.180408i
\(689\) −0.588457 + 1.01924i −0.0224184 + 0.0388299i
\(690\) 0 0
\(691\) 14.0000 + 24.2487i 0.532585 + 0.922464i 0.999276 + 0.0380440i \(0.0121127\pi\)
−0.466691 + 0.884420i \(0.654554\pi\)
\(692\) −9.73205 −0.369957
\(693\) 0 0
\(694\) −14.5359 −0.551775
\(695\) −12.5622 21.7583i −0.476511 0.825341i
\(696\) 0 0
\(697\) −33.1244 + 57.3731i −1.25467 + 2.17316i
\(698\) 2.73205 4.73205i 0.103410 0.179111i
\(699\) 0 0
\(700\) 4.46410 + 7.73205i 0.168727 + 0.292244i
\(701\) −6.60770 −0.249569 −0.124785 0.992184i \(-0.539824\pi\)
−0.124785 + 0.992184i \(0.539824\pi\)
\(702\) 0 0
\(703\) 18.1962 0.686281
\(704\) −2.09808 3.63397i −0.0790742 0.136961i
\(705\) 0 0
\(706\) −9.00000 + 15.5885i −0.338719 + 0.586679i
\(707\) 2.46410 4.26795i 0.0926721 0.160513i
\(708\) 0 0
\(709\) 14.0622 + 24.3564i 0.528116 + 0.914724i 0.999463 + 0.0327760i \(0.0104348\pi\)
−0.471347 + 0.881948i \(0.656232\pi\)
\(710\) 50.2487 1.88580
\(711\) 0 0
\(712\) 3.92820 0.147216
\(713\) −6.80385 11.7846i −0.254806 0.441337i
\(714\) 0 0
\(715\) 3.63397 6.29423i 0.135903 0.235391i
\(716\) 4.09808 7.09808i 0.153152 0.265268i
\(717\) 0 0
\(718\) 1.46410 + 2.53590i 0.0546398 + 0.0946389i
\(719\) 2.53590 0.0945731 0.0472865 0.998881i \(-0.484943\pi\)
0.0472865 + 0.998881i \(0.484943\pi\)
\(720\) 0 0
\(721\) −12.3923 −0.461514
\(722\) 5.76795 + 9.99038i 0.214661 + 0.371803i
\(723\) 0 0
\(724\) −2.19615 + 3.80385i −0.0816194 + 0.141369i
\(725\) 37.7846 65.4449i 1.40329 2.43056i
\(726\) 0 0
\(727\) −8.33975 14.4449i −0.309304 0.535730i 0.668906 0.743347i \(-0.266763\pi\)
−0.978210 + 0.207616i \(0.933429\pi\)
\(728\) −0.464102 −0.0172008
\(729\) 0 0
\(730\) −43.7846 −1.62054
\(731\) 19.1244 + 33.1244i 0.707340 + 1.22515i
\(732\) 0 0
\(733\) −6.33975 + 10.9808i −0.234164 + 0.405584i −0.959029 0.283307i \(-0.908569\pi\)
0.724865 + 0.688890i \(0.241902\pi\)
\(734\) 6.56218 11.3660i 0.242214 0.419528i
\(735\) 0 0
\(736\) 3.09808 + 5.36603i 0.114197 + 0.197794i
\(737\) −13.7128 −0.505118
\(738\) 0 0
\(739\) −16.7321 −0.615498 −0.307749 0.951468i \(-0.599576\pi\)
−0.307749 + 0.951468i \(0.599576\pi\)
\(740\) −12.4282 21.5263i −0.456870 0.791322i
\(741\) 0 0
\(742\) 1.26795 2.19615i 0.0465479 0.0806233i
\(743\) −9.80385 + 16.9808i −0.359668 + 0.622964i −0.987905 0.155058i \(-0.950443\pi\)
0.628237 + 0.778022i \(0.283777\pi\)
\(744\) 0 0
\(745\) −16.7942 29.0885i −0.615293 1.06572i
\(746\) −33.8564 −1.23957
\(747\) 0 0
\(748\) −29.3731 −1.07399
\(749\) 0 0
\(750\) 0 0
\(751\) 24.9282 43.1769i 0.909643 1.57555i 0.0950825 0.995469i \(-0.469688\pi\)
0.814561 0.580079i \(-0.196978\pi\)
\(752\) 0.633975 1.09808i 0.0231187 0.0400427i
\(753\) 0 0
\(754\) 1.96410 + 3.40192i 0.0715284 + 0.123891i
\(755\) 60.4449 2.19981
\(756\) 0 0
\(757\) −20.7846 −0.755429 −0.377715 0.925922i \(-0.623290\pi\)
−0.377715 + 0.925922i \(0.623290\pi\)
\(758\) −8.75833 15.1699i −0.318117 0.550995i
\(759\) 0 0
\(760\) −5.09808 + 8.83013i −0.184927 + 0.320302i
\(761\) 18.5000 32.0429i 0.670624 1.16156i −0.307103 0.951676i \(-0.599360\pi\)
0.977727 0.209879i \(-0.0673071\pi\)
\(762\) 0 0
\(763\) −3.59808 6.23205i −0.130259 0.225615i
\(764\) −11.6603 −0.421853
\(765\) 0 0
\(766\) 35.7128 1.29036
\(767\) −1.43782 2.49038i −0.0519167 0.0899224i
\(768\) 0 0
\(769\) 17.7942 30.8205i 0.641676 1.11142i −0.343382 0.939196i \(-0.611573\pi\)
0.985058 0.172220i \(-0.0550941\pi\)
\(770\) −7.83013 + 13.5622i −0.282178 + 0.488747i
\(771\) 0 0
\(772\) 4.42820 + 7.66987i 0.159375 + 0.276045i
\(773\) −20.1244 −0.723823 −0.361911 0.932213i \(-0.617876\pi\)
−0.361911 + 0.932213i \(0.617876\pi\)
\(774\) 0 0
\(775\) −19.6077 −0.704329
\(776\) 1.46410 + 2.53590i 0.0525582 + 0.0910334i
\(777\) 0 0
\(778\) −3.26795 + 5.66025i −0.117162 + 0.202930i
\(779\) −12.9282 + 22.3923i −0.463201 + 0.802288i
\(780\) 0 0
\(781\) 28.2487 + 48.9282i 1.01082 + 1.75079i
\(782\) 43.3731 1.55102
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) −1.86603 3.23205i −0.0666013 0.115357i
\(786\) 0 0
\(787\) 3.80385 6.58846i 0.135593 0.234853i −0.790231 0.612809i \(-0.790040\pi\)
0.925824 + 0.377956i \(0.123373\pi\)
\(788\) −12.8923 + 22.3301i −0.459269 + 0.795478i
\(789\) 0 0
\(790\) 28.2224 + 48.8827i 1.00411 + 1.73917i
\(791\) −2.26795 −0.0806390
\(792\) 0 0
\(793\) −4.60770 −0.163624
\(794\) 10.5000 + 18.1865i 0.372631 + 0.645416i
\(795\) 0 0
\(796\) −2.56218 + 4.43782i −0.0908140 + 0.157294i
\(797\) 14.7224 25.5000i 0.521495 0.903256i −0.478192 0.878255i \(-0.658708\pi\)
0.999687 0.0250011i \(-0.00795892\pi\)
\(798\) 0 0
\(799\) −4.43782 7.68653i −0.156999 0.271930i
\(800\) 8.92820 0.315660
\(801\) 0 0
\(802\) 34.5167 1.21883
\(803\) −24.6147 42.6340i −0.868635 1.50452i
\(804\) 0 0
\(805\) 11.5622 20.0263i 0.407513 0.705834i
\(806\) 0.509619 0.882686i 0.0179506 0.0310913i
\(807\) 0 0
\(808\) −2.46410 4.26795i −0.0866868 0.150146i
\(809\) −7.87564 −0.276893 −0.138446 0.990370i \(-0.544211\pi\)
−0.138446 + 0.990370i \(0.544211\pi\)
\(810\) 0 0
\(811\) 7.80385 0.274030 0.137015 0.990569i \(-0.456249\pi\)
0.137015 + 0.990569i \(0.456249\pi\)
\(812\) −4.23205 7.33013i −0.148516 0.257237i
\(813\) 0 0
\(814\) 13.9737 24.2032i 0.489779 0.848322i
\(815\) −12.1962 + 21.1244i −0.427213 + 0.739954i
\(816\) 0 0
\(817\) 7.46410 + 12.9282i 0.261136 + 0.452301i
\(818\) 34.6603 1.21187
\(819\) 0 0
\(820\) 35.3205 1.23345
\(821\) 6.03590 + 10.4545i 0.210654 + 0.364864i 0.951919 0.306348i \(-0.0991072\pi\)
−0.741265 + 0.671212i \(0.765774\pi\)
\(822\) 0 0
\(823\) 20.3923 35.3205i 0.710831 1.23120i −0.253715 0.967279i \(-0.581652\pi\)
0.964546 0.263916i \(-0.0850143\pi\)
\(824\) −6.19615 + 10.7321i −0.215853 + 0.373869i
\(825\) 0 0
\(826\) 3.09808 + 5.36603i 0.107796 + 0.186708i
\(827\) −11.3205 −0.393653 −0.196826 0.980438i \(-0.563064\pi\)
−0.196826 + 0.980438i \(0.563064\pi\)
\(828\) 0 0
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) 27.2224 + 47.1506i 0.944904 + 1.63662i
\(831\) 0 0
\(832\) −0.232051 + 0.401924i −0.00804491 + 0.0139342i
\(833\) 3.50000 6.06218i 0.121268 0.210042i
\(834\) 0 0
\(835\) 22.7583 + 39.4186i 0.787584 + 1.36414i
\(836\) −11.4641 −0.396494
\(837\) 0 0
\(838\) 2.53590 0.0876012
\(839\) −2.73205 4.73205i −0.0943209 0.163369i 0.815004 0.579455i \(-0.196735\pi\)
−0.909325 + 0.416087i \(0.863401\pi\)
\(840\) 0 0
\(841\) −21.3205 + 36.9282i −0.735190 + 1.27339i
\(842\) 12.0622 20.8923i 0.415690 0.719996i
\(843\) 0 0
\(844\) 10.3660 + 17.9545i 0.356813 + 0.618019i
\(845\) 47.7128 1.64137
\(846\) 0 0
\(847\) −6.60770 −0.227043
\(848\) −1.26795 2.19615i −0.0435416 0.0754162i
\(849\) 0 0
\(850\) 31.2487 54.1244i 1.07182 1.85645i
\(851\) −20.6340 + 35.7391i −0.707324 + 1.22512i
\(852\) 0 0
\(853\) −2.85641 4.94744i −0.0978015 0.169397i 0.812973 0.582302i \(-0.197848\pi\)
−0.910774 + 0.412904i \(0.864514\pi\)
\(854\) 9.92820 0.339736
\(855\) 0 0
\(856\) 0 0
\(857\) 5.42820 + 9.40192i 0.185424 + 0.321164i 0.943719 0.330748i \(-0.107301\pi\)
−0.758295 + 0.651911i \(0.773968\pi\)
\(858\) 0 0
\(859\) −1.80385 + 3.12436i −0.0615465 + 0.106602i −0.895157 0.445751i \(-0.852937\pi\)
0.833610 + 0.552353i \(0.186270\pi\)
\(860\) 10.1962 17.6603i 0.347686 0.602210i
\(861\) 0 0
\(862\) −10.7321 18.5885i −0.365535 0.633125i
\(863\) −17.1244 −0.582920 −0.291460 0.956583i \(-0.594141\pi\)
−0.291460 + 0.956583i \(0.594141\pi\)
\(864\) 0 0
\(865\) 36.3205 1.23493
\(866\) −6.13397 10.6244i −0.208441 0.361030i
\(867\) 0 0
\(868\) −1.09808 + 1.90192i −0.0372711 + 0.0645555i
\(869\) −31.7321 + 54.9615i −1.07644 + 1.86444i
\(870\) 0 0
\(871\) 0.758330 + 1.31347i 0.0256950 + 0.0445051i
\(872\) −7.19615 −0.243692
\(873\) 0 0
\(874\) 16.9282 0.572605
\(875\) −7.33013 12.6962i −0.247804 0.429208i
\(876\) 0 0
\(877\) −4.25833 + 7.37564i −0.143794 + 0.249058i −0.928922 0.370275i \(-0.879263\pi\)
0.785129 + 0.619333i \(0.212597\pi\)
\(878\) 5.66025 9.80385i 0.191024 0.330864i
\(879\) 0 0
\(880\) 7.83013 + 13.5622i 0.263954 + 0.457181i
\(881\) 18.2487 0.614815 0.307407 0.951578i \(-0.400539\pi\)
0.307407 + 0.951578i \(0.400539\pi\)
\(882\) 0 0
\(883\) 7.66025 0.257788 0.128894 0.991658i \(-0.458857\pi\)
0.128894 + 0.991658i \(0.458857\pi\)
\(884\) 1.62436 + 2.81347i 0.0546330 + 0.0946271i
\(885\) 0 0
\(886\) −9.36603 + 16.2224i −0.314658 + 0.545003i
\(887\) 1.22243 2.11731i 0.0410452 0.0710924i −0.844773 0.535125i \(-0.820265\pi\)
0.885818 + 0.464032i \(0.153598\pi\)
\(888\) 0 0
\(889\) 6.00000 + 10.3923i 0.201234 + 0.348547i
\(890\) −14.6603 −0.491413
\(891\) 0 0
\(892\) −18.5359 −0.620628
\(893\) −1.73205 3.00000i −0.0579609 0.100391i
\(894\) 0 0
\(895\) −15.2942 + 26.4904i −0.511230 + 0.885476i
\(896\) 0.500000 0.866025i 0.0167038 0.0289319i
\(897\) 0 0
\(898\) −5.92820 10.2679i −0.197827 0.342646i
\(899\) 18.5885 0.619960
\(900\) 0 0
\(901\) −17.7513 −0.591381
\(902\) 19.8564 + 34.3923i 0.661146 + 1.14514i
\(903\) 0 0
\(904\) −1.13397 + 1.96410i −0.0377154 + 0.0653250i
\(905\) 8.19615 14.1962i 0.272449 0.471896i
\(906\) 0 0
\(907\) 18.0000 + 31.1769i 0.597680 + 1.03521i 0.993163 + 0.116739i \(0.0372441\pi\)
−0.395482 + 0.918474i \(0.629423\pi\)
\(908\) 5.07180 0.168313
\(909\) 0 0
\(910\) 1.73205 0.0574169
\(911\) −3.12436 5.41154i −0.103515 0.179292i 0.809616 0.586960i \(-0.199675\pi\)
−0.913130 + 0.407668i \(0.866342\pi\)
\(912\) 0 0
\(913\) −30.6077 + 53.0141i −1.01297 + 1.75451i
\(914\) −10.4282 + 18.0622i −0.344934 + 0.597444i
\(915\) 0 0
\(916\) −2.23205 3.86603i −0.0737490 0.127737i
\(917\) 17.4641 0.576715
\(918\) 0 0
\(919\) −24.9808 −0.824039 −0.412020 0.911175i \(-0.635176\pi\)
−0.412020 + 0.911175i \(0.635176\pi\)
\(920\) −11.5622 20.0263i −0.381194 0.660247i
\(921\) 0 0
\(922\) 17.3923 30.1244i 0.572785 0.992093i
\(923\) 3.12436 5.41154i 0.102839 0.178123i
\(924\) 0 0
\(925\) 29.7321 + 51.4974i 0.977584 + 1.69322i
\(926\) −32.5885 −1.07092
\(927\) 0 0
\(928\) −8.46410 −0.277848
\(929\) 22.7487 + 39.4019i 0.746361 + 1.29274i 0.949556 + 0.313597i \(0.101534\pi\)
−0.203195 + 0.979138i \(0.565133\pi\)
\(930\) 0 0
\(931\) 1.36603 2.36603i 0.0447697 0.0775434i
\(932\) −6.59808 + 11.4282i −0.216127 + 0.374343i
\(933\) 0 0
\(934\) 7.29423 + 12.6340i 0.238674 + 0.413396i
\(935\) 109.622 3.58502
\(936\) 0 0
\(937\) 53.8372 1.75878 0.879392 0.476099i \(-0.157950\pi\)
0.879392 + 0.476099i \(0.157950\pi\)
\(938\) −1.63397 2.83013i −0.0533512 0.0924069i
\(939\) 0 0
\(940\) −2.36603 + 4.09808i −0.0771712 + 0.133665i
\(941\) −4.93782 + 8.55256i −0.160968 + 0.278805i −0.935216 0.354077i \(-0.884795\pi\)
0.774248 + 0.632883i \(0.218128\pi\)
\(942\) 0 0
\(943\) −29.3205 50.7846i −0.954807 1.65377i
\(944\) 6.19615 0.201668
\(945\) 0 0
\(946\) 22.9282 0.745460
\(947\) 1.12436 + 1.94744i 0.0365366 + 0.0632833i 0.883715 0.468024i \(-0.155034\pi\)
−0.847179 + 0.531308i \(0.821701\pi\)
\(948\) 0 0
\(949\) −2.72243 + 4.71539i −0.0883739 + 0.153068i
\(950\) 12.1962 21.1244i 0.395695 0.685365i
\(951\) 0 0
\(952\) −3.50000 6.06218i −0.113436 0.196476i
\(953\) 10.4115 0.337263 0.168631 0.985679i \(-0.446065\pi\)
0.168631 + 0.985679i \(0.446065\pi\)
\(954\) 0 0
\(955\) 43.5167 1.40817
\(956\) 14.0263 + 24.2942i 0.453642 + 0.785732i
\(957\) 0 0
\(958\) 11.7583 20.3660i 0.379894 0.657996i
\(959\) 5.86603 10.1603i 0.189424 0.328092i
\(960\) 0 0
\(961\) 13.0885 + 22.6699i 0.422208 + 0.731286i
\(962\) −3.09103 −0.0996590
\(963\) 0 0
\(964\) −17.7321 −0.571111
\(965\) −16.5263 28.6244i −0.532000 0.921451i
\(966\) 0 0
\(967\) −6.83013 + 11.8301i −0.219642 + 0.380431i −0.954699 0.297575i \(-0.903822\pi\)
0.735056 + 0.678006i \(0.237156\pi\)
\(968\) −3.30385 + 5.72243i −0.106190 + 0.183926i
\(969\) 0 0
\(970\) −5.46410 9.46410i −0.175442 0.303874i
\(971\) −33.1244 −1.06301 −0.531506 0.847055i \(-0.678374\pi\)
−0.531506 + 0.847055i \(0.678374\pi\)
\(972\) 0 0
\(973\) 6.73205 0.215820
\(974\) 14.2942 + 24.7583i 0.458017 + 0.793308i
\(975\) 0 0
\(976\) 4.96410 8.59808i 0.158897 0.275218i
\(977\) 1.14359 1.98076i 0.0365868 0.0633702i −0.847152 0.531350i \(-0.821685\pi\)
0.883739 + 0.467980i \(0.155018\pi\)
\(978\) 0 0
\(979\) −8.24167 14.2750i −0.263405 0.456231i
\(980\) −3.73205 −0.119216
\(981\) 0 0
\(982\) −33.4641 −1.06788
\(983\) −5.32051 9.21539i −0.169698 0.293925i 0.768616 0.639711i \(-0.220946\pi\)
−0.938314 + 0.345785i \(0.887613\pi\)
\(984\) 0 0
\(985\) 48.1147 83.3372i 1.53306 2.65534i
\(986\) −29.6244 + 51.3109i −0.943432 + 1.63407i
\(987\) 0 0
\(988\) 0.633975 + 1.09808i 0.0201694 + 0.0349345i
\(989\) −33.8564 −1.07657
\(990\) 0 0
\(991\) −10.3397 −0.328453 −0.164226 0.986423i \(-0.552513\pi\)
−0.164226 + 0.986423i \(0.552513\pi\)
\(992\) 1.09808 + 1.90192i 0.0348640 + 0.0603861i
\(993\) 0 0
\(994\) −6.73205 + 11.6603i −0.213528 + 0.369841i
\(995\) 9.56218 16.5622i 0.303141 0.525056i
\(996\) 0 0
\(997\) 3.62436 + 6.27757i 0.114784 + 0.198813i 0.917694 0.397289i \(-0.130049\pi\)
−0.802909 + 0.596101i \(0.796716\pi\)
\(998\) 30.1962 0.955843
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.2.f.r.757.2 4
3.2 odd 2 1134.2.f.s.757.1 4
9.2 odd 6 1134.2.f.s.379.1 4
9.4 even 3 1134.2.a.m.1.1 yes 2
9.5 odd 6 1134.2.a.l.1.2 2
9.7 even 3 inner 1134.2.f.r.379.2 4
36.23 even 6 9072.2.a.bp.1.2 2
36.31 odd 6 9072.2.a.y.1.1 2
63.13 odd 6 7938.2.a.bt.1.2 2
63.41 even 6 7938.2.a.bg.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1134.2.a.l.1.2 2 9.5 odd 6
1134.2.a.m.1.1 yes 2 9.4 even 3
1134.2.f.r.379.2 4 9.7 even 3 inner
1134.2.f.r.757.2 4 1.1 even 1 trivial
1134.2.f.s.379.1 4 9.2 odd 6
1134.2.f.s.757.1 4 3.2 odd 2
7938.2.a.bg.1.1 2 63.41 even 6
7938.2.a.bt.1.2 2 63.13 odd 6
9072.2.a.y.1.1 2 36.31 odd 6
9072.2.a.bp.1.2 2 36.23 even 6