Properties

Label 1134.2.f.r
Level 11341134
Weight 22
Character orbit 1134.f
Analytic conductor 9.0559.055
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1134,2,Mod(379,1134)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1134, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1134.379"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1134=2347 1134 = 2 \cdot 3^{4} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1134.f (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,0,-2,4,0,2,4,0,-8,2,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.055035589219.05503558921
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 3 3
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2+(β11)q4+(β3β22β1+2)q5+β1q7+q8+(β32)q10+(3β2+β1)q11+(2β3+2β2++3)q13++q98+O(q100) q - \beta_1 q^{2} + (\beta_1 - 1) q^{4} + (\beta_{3} - \beta_{2} - 2 \beta_1 + 2) q^{5} + \beta_1 q^{7} + q^{8} + ( - \beta_{3} - 2) q^{10} + ( - 3 \beta_{2} + \beta_1) q^{11} + ( - 2 \beta_{3} + 2 \beta_{2} + \cdots + 3) q^{13}+ \cdots + q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q22q4+4q5+2q7+4q88q10+2q11+6q13+2q142q1628q174q19+4q20+2q22+2q234q2512q264q28+10q29++4q98+O(q100) 4 q - 2 q^{2} - 2 q^{4} + 4 q^{5} + 2 q^{7} + 4 q^{8} - 8 q^{10} + 2 q^{11} + 6 q^{13} + 2 q^{14} - 2 q^{16} - 28 q^{17} - 4 q^{19} + 4 q^{20} + 2 q^{22} + 2 q^{23} - 4 q^{25} - 12 q^{26} - 4 q^{28} + 10 q^{29}+ \cdots + 4 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ122 \zeta_{12}^{2} Copy content Toggle raw display
β2\beta_{2}== ζ123+ζ12 \zeta_{12}^{3} + \zeta_{12} Copy content Toggle raw display
β3\beta_{3}== ζ123+2ζ12 -\zeta_{12}^{3} + 2\zeta_{12} Copy content Toggle raw display
ζ12\zeta_{12}== (β3+β2)/3 ( \beta_{3} + \beta_{2} ) / 3 Copy content Toggle raw display
ζ122\zeta_{12}^{2}== β1 \beta_1 Copy content Toggle raw display
ζ123\zeta_{12}^{3}== (β3+2β2)/3 ( -\beta_{3} + 2\beta_{2} ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1134Z)×\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times.

nn 325325 407407
χ(n)\chi(n) 11 1+β1-1 + \beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
379.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.500000 + 0.866025i 0 −0.500000 0.866025i 0.133975 + 0.232051i 0 0.500000 0.866025i 1.00000 0 −0.267949
379.2 −0.500000 + 0.866025i 0 −0.500000 0.866025i 1.86603 + 3.23205i 0 0.500000 0.866025i 1.00000 0 −3.73205
757.1 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0.133975 0.232051i 0 0.500000 + 0.866025i 1.00000 0 −0.267949
757.2 −0.500000 0.866025i 0 −0.500000 + 0.866025i 1.86603 3.23205i 0 0.500000 + 0.866025i 1.00000 0 −3.73205
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1134.2.f.r 4
3.b odd 2 1 1134.2.f.s 4
9.c even 3 1 1134.2.a.m yes 2
9.c even 3 1 inner 1134.2.f.r 4
9.d odd 6 1 1134.2.a.l 2
9.d odd 6 1 1134.2.f.s 4
36.f odd 6 1 9072.2.a.y 2
36.h even 6 1 9072.2.a.bp 2
63.l odd 6 1 7938.2.a.bt 2
63.o even 6 1 7938.2.a.bg 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1134.2.a.l 2 9.d odd 6 1
1134.2.a.m yes 2 9.c even 3 1
1134.2.f.r 4 1.a even 1 1 trivial
1134.2.f.r 4 9.c even 3 1 inner
1134.2.f.s 4 3.b odd 2 1
1134.2.f.s 4 9.d odd 6 1
7938.2.a.bg 2 63.o even 6 1
7938.2.a.bt 2 63.l odd 6 1
9072.2.a.y 2 36.f odd 6 1
9072.2.a.bp 2 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1134,[χ])S_{2}^{\mathrm{new}}(1134, [\chi]):

T544T53+15T524T5+1 T_{5}^{4} - 4T_{5}^{3} + 15T_{5}^{2} - 4T_{5} + 1 Copy content Toggle raw display
T1142T113+30T112+52T11+676 T_{11}^{4} - 2T_{11}^{3} + 30T_{11}^{2} + 52T_{11} + 676 Copy content Toggle raw display
T1346T133+39T132+18T13+9 T_{13}^{4} - 6T_{13}^{3} + 39T_{13}^{2} + 18T_{13} + 9 Copy content Toggle raw display
T17+7 T_{17} + 7 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T44T3++1 T^{4} - 4 T^{3} + \cdots + 1 Copy content Toggle raw display
77 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
1111 T42T3++676 T^{4} - 2 T^{3} + \cdots + 676 Copy content Toggle raw display
1313 T46T3++9 T^{4} - 6 T^{3} + \cdots + 9 Copy content Toggle raw display
1717 (T+7)4 (T + 7)^{4} Copy content Toggle raw display
1919 (T2+2T2)2 (T^{2} + 2 T - 2)^{2} Copy content Toggle raw display
2323 T42T3++676 T^{4} - 2 T^{3} + \cdots + 676 Copy content Toggle raw display
2929 T410T3++169 T^{4} - 10 T^{3} + \cdots + 169 Copy content Toggle raw display
3131 T4+6T3++324 T^{4} + 6 T^{3} + \cdots + 324 Copy content Toggle raw display
3737 (T24T71)2 (T^{2} - 4 T - 71)^{2} Copy content Toggle raw display
4141 T412T3++576 T^{4} - 12 T^{3} + \cdots + 576 Copy content Toggle raw display
4343 T4+4T3++64 T^{4} + 4 T^{3} + \cdots + 64 Copy content Toggle raw display
4747 T46T3++36 T^{4} - 6 T^{3} + \cdots + 36 Copy content Toggle raw display
5353 (T212T+24)2 (T^{2} - 12 T + 24)^{2} Copy content Toggle raw display
5959 T4+2T3++676 T^{4} + 2 T^{3} + \cdots + 676 Copy content Toggle raw display
6161 T46T3++1521 T^{4} - 6 T^{3} + \cdots + 1521 Copy content Toggle raw display
6767 T410T3++484 T^{4} - 10 T^{3} + \cdots + 484 Copy content Toggle raw display
7171 (T2+20T+88)2 (T^{2} + 20 T + 88)^{2} Copy content Toggle raw display
7373 (T220T+97)2 (T^{2} - 20 T + 97)^{2} Copy content Toggle raw display
7979 T4+6T3++19044 T^{4} + 6 T^{3} + \cdots + 19044 Copy content Toggle raw display
8383 T42T3++58564 T^{4} - 2 T^{3} + \cdots + 58564 Copy content Toggle raw display
8989 (T2+6T39)2 (T^{2} + 6 T - 39)^{2} Copy content Toggle raw display
9797 T4+8T3++1024 T^{4} + 8 T^{3} + \cdots + 1024 Copy content Toggle raw display
show more
show less