gp: [N,k,chi] = [1134,2,Mod(379,1134)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1134.379");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,-2,0,-2,4,0,2,4,0,-8,2,0,6]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring
β 1 \beta_{1} β 1 = = =
ζ 12 2 \zeta_{12}^{2} ζ 1 2 2
v^2
β 2 \beta_{2} β 2 = = =
ζ 12 3 + ζ 12 \zeta_{12}^{3} + \zeta_{12} ζ 1 2 3 + ζ 1 2
v^3 + v
β 3 \beta_{3} β 3 = = =
− ζ 12 3 + 2 ζ 12 -\zeta_{12}^{3} + 2\zeta_{12} − ζ 1 2 3 + 2 ζ 1 2
-v^3 + 2*v
ζ 12 \zeta_{12} ζ 1 2 = = =
( β 3 + β 2 ) / 3 ( \beta_{3} + \beta_{2} ) / 3 ( β 3 + β 2 ) / 3
(b3 + b2) / 3
ζ 12 2 \zeta_{12}^{2} ζ 1 2 2 = = =
β 1 \beta_1 β 1
b1
ζ 12 3 \zeta_{12}^{3} ζ 1 2 3 = = =
( − β 3 + 2 β 2 ) / 3 ( -\beta_{3} + 2\beta_{2} ) / 3 ( − β 3 + 2 β 2 ) / 3
(-b3 + 2*b2) / 3
Character values
We give the values of χ \chi χ on generators for ( Z / 1134 Z ) × \left(\mathbb{Z}/1134\mathbb{Z}\right)^\times ( Z / 1 1 3 4 Z ) × .
n n n
325 325 3 2 5
407 407 4 0 7
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 + β 1 -1 + \beta_{1} − 1 + β 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 1134 , [ χ ] ) S_{2}^{\mathrm{new}}(1134, [\chi]) S 2 n e w ( 1 1 3 4 , [ χ ] ) :
T 5 4 − 4 T 5 3 + 15 T 5 2 − 4 T 5 + 1 T_{5}^{4} - 4T_{5}^{3} + 15T_{5}^{2} - 4T_{5} + 1 T 5 4 − 4 T 5 3 + 1 5 T 5 2 − 4 T 5 + 1
T5^4 - 4*T5^3 + 15*T5^2 - 4*T5 + 1
T 11 4 − 2 T 11 3 + 30 T 11 2 + 52 T 11 + 676 T_{11}^{4} - 2T_{11}^{3} + 30T_{11}^{2} + 52T_{11} + 676 T 1 1 4 − 2 T 1 1 3 + 3 0 T 1 1 2 + 5 2 T 1 1 + 6 7 6
T11^4 - 2*T11^3 + 30*T11^2 + 52*T11 + 676
T 13 4 − 6 T 13 3 + 39 T 13 2 + 18 T 13 + 9 T_{13}^{4} - 6T_{13}^{3} + 39T_{13}^{2} + 18T_{13} + 9 T 1 3 4 − 6 T 1 3 3 + 3 9 T 1 3 2 + 1 8 T 1 3 + 9
T13^4 - 6*T13^3 + 39*T13^2 + 18*T13 + 9
T 17 + 7 T_{17} + 7 T 1 7 + 7
T17 + 7
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 + T + 1 ) 2 (T^{2} + T + 1)^{2} ( T 2 + T + 1 ) 2
(T^2 + T + 1)^2
3 3 3
T 4 T^{4} T 4
T^4
5 5 5
T 4 − 4 T 3 + ⋯ + 1 T^{4} - 4 T^{3} + \cdots + 1 T 4 − 4 T 3 + ⋯ + 1
T^4 - 4*T^3 + 15*T^2 - 4*T + 1
7 7 7
( T 2 − T + 1 ) 2 (T^{2} - T + 1)^{2} ( T 2 − T + 1 ) 2
(T^2 - T + 1)^2
11 11 1 1
T 4 − 2 T 3 + ⋯ + 676 T^{4} - 2 T^{3} + \cdots + 676 T 4 − 2 T 3 + ⋯ + 6 7 6
T^4 - 2*T^3 + 30*T^2 + 52*T + 676
13 13 1 3
T 4 − 6 T 3 + ⋯ + 9 T^{4} - 6 T^{3} + \cdots + 9 T 4 − 6 T 3 + ⋯ + 9
T^4 - 6*T^3 + 39*T^2 + 18*T + 9
17 17 1 7
( T + 7 ) 4 (T + 7)^{4} ( T + 7 ) 4
(T + 7)^4
19 19 1 9
( T 2 + 2 T − 2 ) 2 (T^{2} + 2 T - 2)^{2} ( T 2 + 2 T − 2 ) 2
(T^2 + 2*T - 2)^2
23 23 2 3
T 4 − 2 T 3 + ⋯ + 676 T^{4} - 2 T^{3} + \cdots + 676 T 4 − 2 T 3 + ⋯ + 6 7 6
T^4 - 2*T^3 + 30*T^2 + 52*T + 676
29 29 2 9
T 4 − 10 T 3 + ⋯ + 169 T^{4} - 10 T^{3} + \cdots + 169 T 4 − 1 0 T 3 + ⋯ + 1 6 9
T^4 - 10*T^3 + 87*T^2 - 130*T + 169
31 31 3 1
T 4 + 6 T 3 + ⋯ + 324 T^{4} + 6 T^{3} + \cdots + 324 T 4 + 6 T 3 + ⋯ + 3 2 4
T^4 + 6*T^3 + 54*T^2 - 108*T + 324
37 37 3 7
( T 2 − 4 T − 71 ) 2 (T^{2} - 4 T - 71)^{2} ( T 2 − 4 T − 7 1 ) 2
(T^2 - 4*T - 71)^2
41 41 4 1
T 4 − 12 T 3 + ⋯ + 576 T^{4} - 12 T^{3} + \cdots + 576 T 4 − 1 2 T 3 + ⋯ + 5 7 6
T^4 - 12*T^3 + 120*T^2 - 288*T + 576
43 43 4 3
T 4 + 4 T 3 + ⋯ + 64 T^{4} + 4 T^{3} + \cdots + 64 T 4 + 4 T 3 + ⋯ + 6 4
T^4 + 4*T^3 + 24*T^2 - 32*T + 64
47 47 4 7
T 4 − 6 T 3 + ⋯ + 36 T^{4} - 6 T^{3} + \cdots + 36 T 4 − 6 T 3 + ⋯ + 3 6
T^4 - 6*T^3 + 30*T^2 - 36*T + 36
53 53 5 3
( T 2 − 12 T + 24 ) 2 (T^{2} - 12 T + 24)^{2} ( T 2 − 1 2 T + 2 4 ) 2
(T^2 - 12*T + 24)^2
59 59 5 9
T 4 + 2 T 3 + ⋯ + 676 T^{4} + 2 T^{3} + \cdots + 676 T 4 + 2 T 3 + ⋯ + 6 7 6
T^4 + 2*T^3 + 30*T^2 - 52*T + 676
61 61 6 1
T 4 − 6 T 3 + ⋯ + 1521 T^{4} - 6 T^{3} + \cdots + 1521 T 4 − 6 T 3 + ⋯ + 1 5 2 1
T^4 - 6*T^3 + 75*T^2 + 234*T + 1521
67 67 6 7
T 4 − 10 T 3 + ⋯ + 484 T^{4} - 10 T^{3} + \cdots + 484 T 4 − 1 0 T 3 + ⋯ + 4 8 4
T^4 - 10*T^3 + 78*T^2 - 220*T + 484
71 71 7 1
( T 2 + 20 T + 88 ) 2 (T^{2} + 20 T + 88)^{2} ( T 2 + 2 0 T + 8 8 ) 2
(T^2 + 20*T + 88)^2
73 73 7 3
( T 2 − 20 T + 97 ) 2 (T^{2} - 20 T + 97)^{2} ( T 2 − 2 0 T + 9 7 ) 2
(T^2 - 20*T + 97)^2
79 79 7 9
T 4 + 6 T 3 + ⋯ + 19044 T^{4} + 6 T^{3} + \cdots + 19044 T 4 + 6 T 3 + ⋯ + 1 9 0 4 4
T^4 + 6*T^3 + 174*T^2 - 828*T + 19044
83 83 8 3
T 4 − 2 T 3 + ⋯ + 58564 T^{4} - 2 T^{3} + \cdots + 58564 T 4 − 2 T 3 + ⋯ + 5 8 5 6 4
T^4 - 2*T^3 + 246*T^2 + 484*T + 58564
89 89 8 9
( T 2 + 6 T − 39 ) 2 (T^{2} + 6 T - 39)^{2} ( T 2 + 6 T − 3 9 ) 2
(T^2 + 6*T - 39)^2
97 97 9 7
T 4 + 8 T 3 + ⋯ + 1024 T^{4} + 8 T^{3} + \cdots + 1024 T 4 + 8 T 3 + ⋯ + 1 0 2 4
T^4 + 8*T^3 + 96*T^2 - 256*T + 1024
show more
show less