L(s) = 1 | + 11.8·5-s − 9.85·7-s + 39.0·11-s + 91.5·13-s + 37.1·17-s + 46.4·19-s − 120.·23-s + 15.5·25-s + 27.2·29-s + 81.1·31-s − 116.·35-s + 10.9·37-s + 205.·41-s − 115.·43-s − 312.·47-s − 245.·49-s − 90.9·53-s + 463.·55-s − 550.·59-s + 630.·61-s + 1.08e3·65-s + 661.·67-s + 494.·71-s + 566.·73-s − 385.·77-s − 49.4·79-s + 564.·83-s + ⋯ |
L(s) = 1 | + 1.06·5-s − 0.532·7-s + 1.07·11-s + 1.95·13-s + 0.529·17-s + 0.561·19-s − 1.09·23-s + 0.124·25-s + 0.174·29-s + 0.470·31-s − 0.564·35-s + 0.0488·37-s + 0.782·41-s − 0.409·43-s − 0.970·47-s − 0.716·49-s − 0.235·53-s + 1.13·55-s − 1.21·59-s + 1.32·61-s + 2.07·65-s + 1.20·67-s + 0.827·71-s + 0.907·73-s − 0.569·77-s − 0.0703·79-s + 0.745·83-s + ⋯ |
Λ(s)=(=(1152s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1152s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.082115655 |
L(21) |
≈ |
3.082115655 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−11.8T+125T2 |
| 7 | 1+9.85T+343T2 |
| 11 | 1−39.0T+1.33e3T2 |
| 13 | 1−91.5T+2.19e3T2 |
| 17 | 1−37.1T+4.91e3T2 |
| 19 | 1−46.4T+6.85e3T2 |
| 23 | 1+120.T+1.21e4T2 |
| 29 | 1−27.2T+2.43e4T2 |
| 31 | 1−81.1T+2.97e4T2 |
| 37 | 1−10.9T+5.06e4T2 |
| 41 | 1−205.T+6.89e4T2 |
| 43 | 1+115.T+7.95e4T2 |
| 47 | 1+312.T+1.03e5T2 |
| 53 | 1+90.9T+1.48e5T2 |
| 59 | 1+550.T+2.05e5T2 |
| 61 | 1−630.T+2.26e5T2 |
| 67 | 1−661.T+3.00e5T2 |
| 71 | 1−494.T+3.57e5T2 |
| 73 | 1−566.T+3.89e5T2 |
| 79 | 1+49.4T+4.93e5T2 |
| 83 | 1−564.T+5.71e5T2 |
| 89 | 1+1.08e3T+7.04e5T2 |
| 97 | 1−464.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.573246124929127709405737165841, −8.711883612088204410309204229018, −7.900795239583206496533982475286, −6.45662512772631035007470417003, −6.29489710607757447726469706472, −5.37733307028289133126446210314, −4.00351961040418126977313039840, −3.27090056278619453963928088953, −1.86172203544796204926168754380, −0.983132755291107895015842329883,
0.983132755291107895015842329883, 1.86172203544796204926168754380, 3.27090056278619453963928088953, 4.00351961040418126977313039840, 5.37733307028289133126446210314, 6.29489710607757447726469706472, 6.45662512772631035007470417003, 7.900795239583206496533982475286, 8.711883612088204410309204229018, 9.573246124929127709405737165841