Properties

Label 1152.4.a.r
Level 11521152
Weight 44
Character orbit 1152.a
Self dual yes
Analytic conductor 67.97067.970
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,4,Mod(1,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1152=2732 1152 = 2^{7} \cdot 3^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1152.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 67.970200326667.9702003266
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x23 x^{2} - 3 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 128)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=43\beta = 4\sqrt{3}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2β2)q5+(2β+4)q7+(β+46)q11+(6β+50)q13+(12β46)q17+(7β2)q19+(18β+4)q23+(8β+71)q25+(10β42)q29++(92β+1102)q97+O(q100) q + (2 \beta - 2) q^{5} + ( - 2 \beta + 4) q^{7} + ( - \beta + 46) q^{11} + (6 \beta + 50) q^{13} + (12 \beta - 46) q^{17} + (7 \beta - 2) q^{19} + ( - 18 \beta + 4) q^{23} + ( - 8 \beta + 71) q^{25} + (10 \beta - 42) q^{29}+ \cdots + ( - 92 \beta + 1102) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q4q5+8q7+92q11+100q1392q174q19+8q23+142q2584q29+384q31400q35172q37+300q41300q4316q47270q49+12q53++2204q97+O(q100) 2 q - 4 q^{5} + 8 q^{7} + 92 q^{11} + 100 q^{13} - 92 q^{17} - 4 q^{19} + 8 q^{23} + 142 q^{25} - 84 q^{29} + 384 q^{31} - 400 q^{35} - 172 q^{37} + 300 q^{41} - 300 q^{43} - 16 q^{47} - 270 q^{49} + 12 q^{53}+ \cdots + 2204 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.73205
1.73205
0 0 0 −15.8564 0 17.8564 0 0 0
1.2 0 0 0 11.8564 0 −9.85641 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1152.4.a.r 2
3.b odd 2 1 128.4.a.f yes 2
4.b odd 2 1 1152.4.a.q 2
8.b even 2 1 1152.4.a.t 2
8.d odd 2 1 1152.4.a.s 2
12.b even 2 1 128.4.a.h yes 2
24.f even 2 1 128.4.a.e 2
24.h odd 2 1 128.4.a.g yes 2
48.i odd 4 2 256.4.b.h 4
48.k even 4 2 256.4.b.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
128.4.a.e 2 24.f even 2 1
128.4.a.f yes 2 3.b odd 2 1
128.4.a.g yes 2 24.h odd 2 1
128.4.a.h yes 2 12.b even 2 1
256.4.b.h 4 48.i odd 4 2
256.4.b.i 4 48.k even 4 2
1152.4.a.q 2 4.b odd 2 1
1152.4.a.r 2 1.a even 1 1 trivial
1152.4.a.s 2 8.d odd 2 1
1152.4.a.t 2 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1152))S_{4}^{\mathrm{new}}(\Gamma_0(1152)):

T52+4T5188 T_{5}^{2} + 4T_{5} - 188 Copy content Toggle raw display
T728T7176 T_{7}^{2} - 8T_{7} - 176 Copy content Toggle raw display
T132100T13+772 T_{13}^{2} - 100T_{13} + 772 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+4T188 T^{2} + 4T - 188 Copy content Toggle raw display
77 T28T176 T^{2} - 8T - 176 Copy content Toggle raw display
1111 T292T+2068 T^{2} - 92T + 2068 Copy content Toggle raw display
1313 T2100T+772 T^{2} - 100T + 772 Copy content Toggle raw display
1717 T2+92T4796 T^{2} + 92T - 4796 Copy content Toggle raw display
1919 T2+4T2348 T^{2} + 4T - 2348 Copy content Toggle raw display
2323 T28T15536 T^{2} - 8T - 15536 Copy content Toggle raw display
2929 T2+84T3036 T^{2} + 84T - 3036 Copy content Toggle raw display
3131 T2384T+24576 T^{2} - 384T + 24576 Copy content Toggle raw display
3737 T2+172T2012 T^{2} + 172T - 2012 Copy content Toggle raw display
4141 T2300T+19428 T^{2} - 300T + 19428 Copy content Toggle raw display
4343 T2+300T+21300 T^{2} + 300T + 21300 Copy content Toggle raw display
4747 T2+16T92864 T^{2} + 16T - 92864 Copy content Toggle raw display
5353 T212T9372 T^{2} - 12T - 9372 Copy content Toggle raw display
5959 T2+644T+51412 T^{2} + 644T + 51412 Copy content Toggle raw display
6161 T2292T213884 T^{2} - 292T - 213884 Copy content Toggle raw display
6767 T2172T323276 T^{2} - 172T - 323276 Copy content Toggle raw display
7171 T2408T43056 T^{2} - 408T - 43056 Copy content Toggle raw display
7373 T2412T87356 T^{2} - 412T - 87356 Copy content Toggle raw display
7979 T2400T22208 T^{2} - 400T - 22208 Copy content Toggle raw display
8383 T2948T+216564 T^{2} - 948T + 216564 Copy content Toggle raw display
8989 T2+572T564092 T^{2} + 572T - 564092 Copy content Toggle raw display
9797 T22204T+808132 T^{2} - 2204 T + 808132 Copy content Toggle raw display
show more
show less