Properties

Label 1152.4.a.r
Level $1152$
Weight $4$
Character orbit 1152.a
Self dual yes
Analytic conductor $67.970$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,4,Mod(1,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1152.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.9702003266\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 128)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (2 \beta - 2) q^{5} + ( - 2 \beta + 4) q^{7} + ( - \beta + 46) q^{11} + (6 \beta + 50) q^{13} + (12 \beta - 46) q^{17} + (7 \beta - 2) q^{19} + ( - 18 \beta + 4) q^{23} + ( - 8 \beta + 71) q^{25} + (10 \beta - 42) q^{29}+ \cdots + ( - 92 \beta + 1102) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{5} + 8 q^{7} + 92 q^{11} + 100 q^{13} - 92 q^{17} - 4 q^{19} + 8 q^{23} + 142 q^{25} - 84 q^{29} + 384 q^{31} - 400 q^{35} - 172 q^{37} + 300 q^{41} - 300 q^{43} - 16 q^{47} - 270 q^{49} + 12 q^{53}+ \cdots + 2204 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 0 0 −15.8564 0 17.8564 0 0 0
1.2 0 0 0 11.8564 0 −9.85641 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1152.4.a.r 2
3.b odd 2 1 128.4.a.f yes 2
4.b odd 2 1 1152.4.a.q 2
8.b even 2 1 1152.4.a.t 2
8.d odd 2 1 1152.4.a.s 2
12.b even 2 1 128.4.a.h yes 2
24.f even 2 1 128.4.a.e 2
24.h odd 2 1 128.4.a.g yes 2
48.i odd 4 2 256.4.b.h 4
48.k even 4 2 256.4.b.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
128.4.a.e 2 24.f even 2 1
128.4.a.f yes 2 3.b odd 2 1
128.4.a.g yes 2 24.h odd 2 1
128.4.a.h yes 2 12.b even 2 1
256.4.b.h 4 48.i odd 4 2
256.4.b.i 4 48.k even 4 2
1152.4.a.q 2 4.b odd 2 1
1152.4.a.r 2 1.a even 1 1 trivial
1152.4.a.s 2 8.d odd 2 1
1152.4.a.t 2 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1152))\):

\( T_{5}^{2} + 4T_{5} - 188 \) Copy content Toggle raw display
\( T_{7}^{2} - 8T_{7} - 176 \) Copy content Toggle raw display
\( T_{13}^{2} - 100T_{13} + 772 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 4T - 188 \) Copy content Toggle raw display
$7$ \( T^{2} - 8T - 176 \) Copy content Toggle raw display
$11$ \( T^{2} - 92T + 2068 \) Copy content Toggle raw display
$13$ \( T^{2} - 100T + 772 \) Copy content Toggle raw display
$17$ \( T^{2} + 92T - 4796 \) Copy content Toggle raw display
$19$ \( T^{2} + 4T - 2348 \) Copy content Toggle raw display
$23$ \( T^{2} - 8T - 15536 \) Copy content Toggle raw display
$29$ \( T^{2} + 84T - 3036 \) Copy content Toggle raw display
$31$ \( T^{2} - 384T + 24576 \) Copy content Toggle raw display
$37$ \( T^{2} + 172T - 2012 \) Copy content Toggle raw display
$41$ \( T^{2} - 300T + 19428 \) Copy content Toggle raw display
$43$ \( T^{2} + 300T + 21300 \) Copy content Toggle raw display
$47$ \( T^{2} + 16T - 92864 \) Copy content Toggle raw display
$53$ \( T^{2} - 12T - 9372 \) Copy content Toggle raw display
$59$ \( T^{2} + 644T + 51412 \) Copy content Toggle raw display
$61$ \( T^{2} - 292T - 213884 \) Copy content Toggle raw display
$67$ \( T^{2} - 172T - 323276 \) Copy content Toggle raw display
$71$ \( T^{2} - 408T - 43056 \) Copy content Toggle raw display
$73$ \( T^{2} - 412T - 87356 \) Copy content Toggle raw display
$79$ \( T^{2} - 400T - 22208 \) Copy content Toggle raw display
$83$ \( T^{2} - 948T + 216564 \) Copy content Toggle raw display
$89$ \( T^{2} + 572T - 564092 \) Copy content Toggle raw display
$97$ \( T^{2} - 2204 T + 808132 \) Copy content Toggle raw display
show more
show less