L(s) = 1 | + (−1.5 − 0.866i)3-s + (−2.36 − 1.36i)5-s − 1.26i·7-s − 4.46·11-s + (2.36 + 4.09i)15-s + (2.73 − 4.73i)17-s + (−0.5 − 4.33i)19-s + (−1.09 + 1.90i)21-s + (−3.63 + 2.09i)23-s + (1.23 + 2.13i)25-s + 5.19i·27-s + (1.09 + 1.90i)29-s − 2.19·31-s + (6.69 + 3.86i)33-s + (−1.73 + 3.00i)35-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.499i)3-s + (−1.05 − 0.610i)5-s − 0.479i·7-s − 1.34·11-s + (0.610 + 1.05i)15-s + (0.662 − 1.14i)17-s + (−0.114 − 0.993i)19-s + (−0.239 + 0.415i)21-s + (−0.757 + 0.437i)23-s + (0.246 + 0.426i)25-s + 0.999i·27-s + (0.203 + 0.353i)29-s − 0.394·31-s + (1.16 + 0.672i)33-s + (−0.292 + 0.507i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0489 - 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0489 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + (0.5 + 4.33i)T \) |
good | 3 | \( 1 + (1.5 + 0.866i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (2.36 + 1.36i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + 1.26iT - 7T^{2} \) |
| 11 | \( 1 + 4.46T + 11T^{2} \) |
| 13 | \( 1 + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.73 + 4.73i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (3.63 - 2.09i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.09 - 1.90i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 2.19T + 31T^{2} \) |
| 37 | \( 1 + 4.73T + 37T^{2} \) |
| 41 | \( 1 + (-6.69 - 3.86i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.73 + 3i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (8.36 - 4.83i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.73 - 8.19i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.696 - 0.401i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-10.5 + 6.09i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.69 + 2.13i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (1.26 - 2.19i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.5 + 4.33i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (8.19 - 14.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 3.39T + 83T^{2} \) |
| 89 | \( 1 + (11.1 - 6.46i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (6.69 + 3.86i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.054594348370106354959594357225, −8.052420101715040672955909364341, −7.47764733621339253762428209427, −6.77523702346880101930218217442, −5.53950627704779727473066817125, −4.99830295761809621610591852870, −3.95040392874279238336211538598, −2.76398728565106356709405996052, −0.922295206936550637962057402849, 0,
2.25620591739892058766358954931, 3.49486431902112893523638122725, 4.31253683958934029031937233432, 5.47472899284056516914550446967, 5.88371764144996900914480826913, 7.09846534150064078162454146164, 8.064341166346484411623735593355, 8.362119013415235139609880166602, 9.975004536878591871849470234078