L(s) = 1 | + (−1.5 − 0.866i)3-s + (−2.36 − 1.36i)5-s − 1.26i·7-s − 4.46·11-s + (2.36 + 4.09i)15-s + (2.73 − 4.73i)17-s + (−0.5 − 4.33i)19-s + (−1.09 + 1.90i)21-s + (−3.63 + 2.09i)23-s + (1.23 + 2.13i)25-s + 5.19i·27-s + (1.09 + 1.90i)29-s − 2.19·31-s + (6.69 + 3.86i)33-s + (−1.73 + 3.00i)35-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.499i)3-s + (−1.05 − 0.610i)5-s − 0.479i·7-s − 1.34·11-s + (0.610 + 1.05i)15-s + (0.662 − 1.14i)17-s + (−0.114 − 0.993i)19-s + (−0.239 + 0.415i)21-s + (−0.757 + 0.437i)23-s + (0.246 + 0.426i)25-s + 0.999i·27-s + (0.203 + 0.353i)29-s − 0.394·31-s + (1.16 + 0.672i)33-s + (−0.292 + 0.507i)35-s + ⋯ |
Λ(s)=(=(1216s/2ΓC(s)L(s)(0.0489−0.998i)Λ(2−s)
Λ(s)=(=(1216s/2ΓC(s+1/2)L(s)(0.0489−0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
1216
= 26⋅19
|
Sign: |
0.0489−0.998i
|
Analytic conductor: |
9.70980 |
Root analytic conductor: |
3.11605 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1216(863,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 1216, ( :1/2), 0.0489−0.998i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 19 | 1+(0.5+4.33i)T |
good | 3 | 1+(1.5+0.866i)T+(1.5+2.59i)T2 |
| 5 | 1+(2.36+1.36i)T+(2.5+4.33i)T2 |
| 7 | 1+1.26iT−7T2 |
| 11 | 1+4.46T+11T2 |
| 13 | 1+(−6.5+11.2i)T2 |
| 17 | 1+(−2.73+4.73i)T+(−8.5−14.7i)T2 |
| 23 | 1+(3.63−2.09i)T+(11.5−19.9i)T2 |
| 29 | 1+(−1.09−1.90i)T+(−14.5+25.1i)T2 |
| 31 | 1+2.19T+31T2 |
| 37 | 1+4.73T+37T2 |
| 41 | 1+(−6.69−3.86i)T+(20.5+35.5i)T2 |
| 43 | 1+(−1.73+3i)T+(−21.5−37.2i)T2 |
| 47 | 1+(8.36−4.83i)T+(23.5−40.7i)T2 |
| 53 | 1+(−4.73−8.19i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−0.696−0.401i)T+(29.5+51.0i)T2 |
| 61 | 1+(−10.5+6.09i)T+(30.5−52.8i)T2 |
| 67 | 1+(−3.69+2.13i)T+(33.5−58.0i)T2 |
| 71 | 1+(1.26−2.19i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−2.5+4.33i)T+(−36.5−63.2i)T2 |
| 79 | 1+(8.19−14.1i)T+(−39.5−68.4i)T2 |
| 83 | 1−3.39T+83T2 |
| 89 | 1+(11.1−6.46i)T+(44.5−77.0i)T2 |
| 97 | 1+(6.69+3.86i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.054594348370106354959594357225, −8.052420101715040672955909364341, −7.47764733621339253762428209427, −6.77523702346880101930218217442, −5.53950627704779727473066817125, −4.99830295761809621610591852870, −3.95040392874279238336211538598, −2.76398728565106356709405996052, −0.922295206936550637962057402849, 0,
2.25620591739892058766358954931, 3.49486431902112893523638122725, 4.31253683958934029031937233432, 5.47472899284056516914550446967, 5.88371764144996900914480826913, 7.09846534150064078162454146164, 8.064341166346484411623735593355, 8.362119013415235139609880166602, 9.975004536878591871849470234078