Properties

Label 1216.2.s.a
Level 12161216
Weight 22
Character orbit 1216.s
Analytic conductor 9.7109.710
Analytic rank 11
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,2,Mod(31,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1216=2619 1216 = 2^{6} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1216.s (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.709808885799.70980888579
Analytic rank: 11
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ1222)q3+(ζ123+ζ122+2)q5+(3ζ1232ζ122+1)q7+(2ζ123+4ζ121)q11+(2ζ1233ζ122++3)q15++(6ζ123+ζ122+2)q97+O(q100) q + (\zeta_{12}^{2} - 2) q^{3} + ( - \zeta_{12}^{3} + \zeta_{12}^{2} + \cdots - 2) q^{5} + ( - 3 \zeta_{12}^{3} - 2 \zeta_{12}^{2} + 1) q^{7} + ( - 2 \zeta_{12}^{3} + 4 \zeta_{12} - 1) q^{11} + (2 \zeta_{12}^{3} - 3 \zeta_{12}^{2} + \cdots + 3) q^{15}+ \cdots + ( - 6 \zeta_{12}^{3} + \zeta_{12}^{2} + \cdots - 2) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q6q36q54q11+6q15+4q172q19+6q2118q232q256q29+12q31+6q3312q37+6q4130q4720q4912q51+12q53+6q97+O(q100) 4 q - 6 q^{3} - 6 q^{5} - 4 q^{11} + 6 q^{15} + 4 q^{17} - 2 q^{19} + 6 q^{21} - 18 q^{23} - 2 q^{25} - 6 q^{29} + 12 q^{31} + 6 q^{33} - 12 q^{37} + 6 q^{41} - 30 q^{47} - 20 q^{49} - 12 q^{51} + 12 q^{53}+ \cdots - 6 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1216Z)×\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times.

nn 191191 705705 837837
χ(n)\chi(n) 1-1 1ζ1221 - \zeta_{12}^{2} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
31.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
0 −1.50000 + 0.866025i 0 −2.36603 + 1.36603i 0 1.26795i 0 0 0
31.2 0 −1.50000 + 0.866025i 0 −0.633975 + 0.366025i 0 4.73205i 0 0 0
863.1 0 −1.50000 0.866025i 0 −2.36603 1.36603i 0 1.26795i 0 0 0
863.2 0 −1.50000 0.866025i 0 −0.633975 0.366025i 0 4.73205i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
152.o even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.2.s.a 4
4.b odd 2 1 1216.2.s.e yes 4
8.b even 2 1 1216.2.s.f yes 4
8.d odd 2 1 1216.2.s.b yes 4
19.d odd 6 1 1216.2.s.b yes 4
76.f even 6 1 1216.2.s.f yes 4
152.l odd 6 1 1216.2.s.e yes 4
152.o even 6 1 inner 1216.2.s.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1216.2.s.a 4 1.a even 1 1 trivial
1216.2.s.a 4 152.o even 6 1 inner
1216.2.s.b yes 4 8.d odd 2 1
1216.2.s.b yes 4 19.d odd 6 1
1216.2.s.e yes 4 4.b odd 2 1
1216.2.s.e yes 4 152.l odd 6 1
1216.2.s.f yes 4 8.b even 2 1
1216.2.s.f yes 4 76.f even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1216,[χ])S_{2}^{\mathrm{new}}(1216, [\chi]):

T32+3T3+3 T_{3}^{2} + 3T_{3} + 3 Copy content Toggle raw display
T54+6T53+14T52+12T5+4 T_{5}^{4} + 6T_{5}^{3} + 14T_{5}^{2} + 12T_{5} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2+3T+3)2 (T^{2} + 3 T + 3)^{2} Copy content Toggle raw display
55 T4+6T3++4 T^{4} + 6 T^{3} + \cdots + 4 Copy content Toggle raw display
77 T4+24T2+36 T^{4} + 24T^{2} + 36 Copy content Toggle raw display
1111 (T2+2T11)2 (T^{2} + 2 T - 11)^{2} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T44T3++64 T^{4} - 4 T^{3} + \cdots + 64 Copy content Toggle raw display
1919 (T2+T+19)2 (T^{2} + T + 19)^{2} Copy content Toggle raw display
2323 T4+18T3++676 T^{4} + 18 T^{3} + \cdots + 676 Copy content Toggle raw display
2929 T4+6T3++324 T^{4} + 6 T^{3} + \cdots + 324 Copy content Toggle raw display
3131 (T26T18)2 (T^{2} - 6 T - 18)^{2} Copy content Toggle raw display
3737 (T2+6T+6)2 (T^{2} + 6 T + 6)^{2} Copy content Toggle raw display
4141 T46T3++1089 T^{4} - 6 T^{3} + \cdots + 1089 Copy content Toggle raw display
4343 T4+12T2+144 T^{4} + 12T^{2} + 144 Copy content Toggle raw display
4747 T4+30T3++5476 T^{4} + 30 T^{3} + \cdots + 5476 Copy content Toggle raw display
5353 T412T3++576 T^{4} - 12 T^{3} + \cdots + 576 Copy content Toggle raw display
5959 T4+18T3++81 T^{4} + 18 T^{3} + \cdots + 81 Copy content Toggle raw display
6161 T418T3++484 T^{4} - 18 T^{3} + \cdots + 484 Copy content Toggle raw display
6767 T4+6T3++1089 T^{4} + 6 T^{3} + \cdots + 1089 Copy content Toggle raw display
7171 T4+12T3++576 T^{4} + 12 T^{3} + \cdots + 576 Copy content Toggle raw display
7373 (T25T+25)2 (T^{2} - 5 T + 25)^{2} Copy content Toggle raw display
7979 T4+12T3++5184 T^{4} + 12 T^{3} + \cdots + 5184 Copy content Toggle raw display
8383 (T2+14T59)2 (T^{2} + 14 T - 59)^{2} Copy content Toggle raw display
8989 T4+24T3++144 T^{4} + 24 T^{3} + \cdots + 144 Copy content Toggle raw display
9797 T4+6T3++1089 T^{4} + 6 T^{3} + \cdots + 1089 Copy content Toggle raw display
show more
show less