Properties

Label 1216.2.s.a.863.1
Level $1216$
Weight $2$
Character 1216.863
Analytic conductor $9.710$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1216,2,Mod(31,1216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1216, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1216.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1216.s (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.70980888579\)
Analytic rank: \(1\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 863.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1216.863
Dual form 1216.2.s.a.31.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 - 0.866025i) q^{3} +(-2.36603 - 1.36603i) q^{5} -1.26795i q^{7} -4.46410 q^{11} +(2.36603 + 4.09808i) q^{15} +(2.73205 - 4.73205i) q^{17} +(-0.500000 - 4.33013i) q^{19} +(-1.09808 + 1.90192i) q^{21} +(-3.63397 + 2.09808i) q^{23} +(1.23205 + 2.13397i) q^{25} +5.19615i q^{27} +(1.09808 + 1.90192i) q^{29} -2.19615 q^{31} +(6.69615 + 3.86603i) q^{33} +(-1.73205 + 3.00000i) q^{35} -4.73205 q^{37} +(6.69615 + 3.86603i) q^{41} +(1.73205 - 3.00000i) q^{43} +(-8.36603 + 4.83013i) q^{47} +5.39230 q^{49} +(-8.19615 + 4.73205i) q^{51} +(4.73205 + 8.19615i) q^{53} +(10.5622 + 6.09808i) q^{55} +(-3.00000 + 6.92820i) q^{57} +(0.696152 + 0.401924i) q^{59} +(10.5622 - 6.09808i) q^{61} +(3.69615 - 2.13397i) q^{67} +7.26795 q^{69} +(-1.26795 + 2.19615i) q^{71} +(2.50000 - 4.33013i) q^{73} -4.26795i q^{75} +5.66025i q^{77} +(-8.19615 + 14.1962i) q^{79} +(4.50000 - 7.79423i) q^{81} +3.39230 q^{83} +(-12.9282 + 7.46410i) q^{85} -3.80385i q^{87} +(-11.1962 + 6.46410i) q^{89} +(3.29423 + 1.90192i) q^{93} +(-4.73205 + 10.9282i) q^{95} +(-6.69615 - 3.86603i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{3} - 6 q^{5} - 4 q^{11} + 6 q^{15} + 4 q^{17} - 2 q^{19} + 6 q^{21} - 18 q^{23} - 2 q^{25} - 6 q^{29} + 12 q^{31} + 6 q^{33} - 12 q^{37} + 6 q^{41} - 30 q^{47} - 20 q^{49} - 12 q^{51} + 12 q^{53}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 0.866025i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 0 0
\(5\) −2.36603 1.36603i −1.05812 0.610905i −0.133207 0.991088i \(-0.542528\pi\)
−0.924911 + 0.380183i \(0.875861\pi\)
\(6\) 0 0
\(7\) 1.26795i 0.479240i −0.970867 0.239620i \(-0.922977\pi\)
0.970867 0.239620i \(-0.0770228\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.46410 −1.34598 −0.672989 0.739653i \(-0.734990\pi\)
−0.672989 + 0.739653i \(0.734990\pi\)
\(12\) 0 0
\(13\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(14\) 0 0
\(15\) 2.36603 + 4.09808i 0.610905 + 1.05812i
\(16\) 0 0
\(17\) 2.73205 4.73205i 0.662620 1.14769i −0.317305 0.948323i \(-0.602778\pi\)
0.979925 0.199367i \(-0.0638887\pi\)
\(18\) 0 0
\(19\) −0.500000 4.33013i −0.114708 0.993399i
\(20\) 0 0
\(21\) −1.09808 + 1.90192i −0.239620 + 0.415034i
\(22\) 0 0
\(23\) −3.63397 + 2.09808i −0.757736 + 0.437479i −0.828482 0.560015i \(-0.810795\pi\)
0.0707462 + 0.997494i \(0.477462\pi\)
\(24\) 0 0
\(25\) 1.23205 + 2.13397i 0.246410 + 0.426795i
\(26\) 0 0
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) 1.09808 + 1.90192i 0.203908 + 0.353178i 0.949784 0.312906i \(-0.101302\pi\)
−0.745877 + 0.666084i \(0.767969\pi\)
\(30\) 0 0
\(31\) −2.19615 −0.394441 −0.197220 0.980359i \(-0.563191\pi\)
−0.197220 + 0.980359i \(0.563191\pi\)
\(32\) 0 0
\(33\) 6.69615 + 3.86603i 1.16565 + 0.672989i
\(34\) 0 0
\(35\) −1.73205 + 3.00000i −0.292770 + 0.507093i
\(36\) 0 0
\(37\) −4.73205 −0.777944 −0.388972 0.921250i \(-0.627170\pi\)
−0.388972 + 0.921250i \(0.627170\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.69615 + 3.86603i 1.04576 + 0.603772i 0.921460 0.388473i \(-0.126997\pi\)
0.124303 + 0.992244i \(0.460331\pi\)
\(42\) 0 0
\(43\) 1.73205 3.00000i 0.264135 0.457496i −0.703201 0.710991i \(-0.748247\pi\)
0.967337 + 0.253495i \(0.0815801\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.36603 + 4.83013i −1.22031 + 0.704546i −0.964984 0.262309i \(-0.915516\pi\)
−0.255326 + 0.966855i \(0.582183\pi\)
\(48\) 0 0
\(49\) 5.39230 0.770329
\(50\) 0 0
\(51\) −8.19615 + 4.73205i −1.14769 + 0.662620i
\(52\) 0 0
\(53\) 4.73205 + 8.19615i 0.649997 + 1.12583i 0.983123 + 0.182946i \(0.0585633\pi\)
−0.333126 + 0.942882i \(0.608103\pi\)
\(54\) 0 0
\(55\) 10.5622 + 6.09808i 1.42420 + 0.822264i
\(56\) 0 0
\(57\) −3.00000 + 6.92820i −0.397360 + 0.917663i
\(58\) 0 0
\(59\) 0.696152 + 0.401924i 0.0906313 + 0.0523260i 0.544631 0.838676i \(-0.316670\pi\)
−0.453999 + 0.891002i \(0.650003\pi\)
\(60\) 0 0
\(61\) 10.5622 6.09808i 1.35235 0.780779i 0.363770 0.931489i \(-0.381489\pi\)
0.988578 + 0.150710i \(0.0481560\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 3.69615 2.13397i 0.451557 0.260706i −0.256931 0.966430i \(-0.582711\pi\)
0.708487 + 0.705723i \(0.249378\pi\)
\(68\) 0 0
\(69\) 7.26795 0.874958
\(70\) 0 0
\(71\) −1.26795 + 2.19615i −0.150478 + 0.260635i −0.931403 0.363989i \(-0.881415\pi\)
0.780925 + 0.624624i \(0.214748\pi\)
\(72\) 0 0
\(73\) 2.50000 4.33013i 0.292603 0.506803i −0.681822 0.731519i \(-0.738812\pi\)
0.974424 + 0.224716i \(0.0721453\pi\)
\(74\) 0 0
\(75\) 4.26795i 0.492820i
\(76\) 0 0
\(77\) 5.66025i 0.645046i
\(78\) 0 0
\(79\) −8.19615 + 14.1962i −0.922139 + 1.59719i −0.126041 + 0.992025i \(0.540227\pi\)
−0.796099 + 0.605167i \(0.793106\pi\)
\(80\) 0 0
\(81\) 4.50000 7.79423i 0.500000 0.866025i
\(82\) 0 0
\(83\) 3.39230 0.372354 0.186177 0.982516i \(-0.440390\pi\)
0.186177 + 0.982516i \(0.440390\pi\)
\(84\) 0 0
\(85\) −12.9282 + 7.46410i −1.40226 + 0.809595i
\(86\) 0 0
\(87\) 3.80385i 0.407815i
\(88\) 0 0
\(89\) −11.1962 + 6.46410i −1.18679 + 0.685193i −0.957575 0.288183i \(-0.906949\pi\)
−0.229214 + 0.973376i \(0.573616\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 3.29423 + 1.90192i 0.341596 + 0.197220i
\(94\) 0 0
\(95\) −4.73205 + 10.9282i −0.485498 + 1.12121i
\(96\) 0 0
\(97\) −6.69615 3.86603i −0.679891 0.392535i 0.119923 0.992783i \(-0.461735\pi\)
−0.799814 + 0.600248i \(0.795069\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −14.0263 + 8.09808i −1.39567 + 0.805789i −0.993935 0.109969i \(-0.964925\pi\)
−0.401732 + 0.915757i \(0.631592\pi\)
\(102\) 0 0
\(103\) 9.46410 0.932526 0.466263 0.884646i \(-0.345600\pi\)
0.466263 + 0.884646i \(0.345600\pi\)
\(104\) 0 0
\(105\) 5.19615 3.00000i 0.507093 0.292770i
\(106\) 0 0
\(107\) 4.39230i 0.424620i −0.977202 0.212310i \(-0.931901\pi\)
0.977202 0.212310i \(-0.0680987\pi\)
\(108\) 0 0
\(109\) −1.26795 + 2.19615i −0.121448 + 0.210353i −0.920339 0.391122i \(-0.872087\pi\)
0.798891 + 0.601476i \(0.205420\pi\)
\(110\) 0 0
\(111\) 7.09808 + 4.09808i 0.673720 + 0.388972i
\(112\) 0 0
\(113\) 15.5885i 1.46644i 0.679992 + 0.733219i \(0.261983\pi\)
−0.679992 + 0.733219i \(0.738017\pi\)
\(114\) 0 0
\(115\) 11.4641 1.06903
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.00000 3.46410i −0.550019 0.317554i
\(120\) 0 0
\(121\) 8.92820 0.811655
\(122\) 0 0
\(123\) −6.69615 11.5981i −0.603772 1.04576i
\(124\) 0 0
\(125\) 6.92820i 0.619677i
\(126\) 0 0
\(127\) −1.26795 2.19615i −0.112512 0.194877i 0.804270 0.594264i \(-0.202556\pi\)
−0.916783 + 0.399387i \(0.869223\pi\)
\(128\) 0 0
\(129\) −5.19615 + 3.00000i −0.457496 + 0.264135i
\(130\) 0 0
\(131\) 0.964102 1.66987i 0.0842339 0.145897i −0.820831 0.571172i \(-0.806489\pi\)
0.905065 + 0.425274i \(0.139822\pi\)
\(132\) 0 0
\(133\) −5.49038 + 0.633975i −0.476076 + 0.0549726i
\(134\) 0 0
\(135\) 7.09808 12.2942i 0.610905 1.05812i
\(136\) 0 0
\(137\) −8.96410 15.5263i −0.765855 1.32650i −0.939793 0.341743i \(-0.888983\pi\)
0.173939 0.984757i \(-0.444351\pi\)
\(138\) 0 0
\(139\) 2.69615 + 4.66987i 0.228685 + 0.396093i 0.957419 0.288704i \(-0.0932242\pi\)
−0.728734 + 0.684797i \(0.759891\pi\)
\(140\) 0 0
\(141\) 16.7321 1.40909
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 6.00000i 0.498273i
\(146\) 0 0
\(147\) −8.08846 4.66987i −0.667125 0.385165i
\(148\) 0 0
\(149\) −8.36603 4.83013i −0.685372 0.395699i 0.116504 0.993190i \(-0.462831\pi\)
−0.801876 + 0.597491i \(0.796164\pi\)
\(150\) 0 0
\(151\) 16.7321 1.36163 0.680817 0.732453i \(-0.261625\pi\)
0.680817 + 0.732453i \(0.261625\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.19615 + 3.00000i 0.417365 + 0.240966i
\(156\) 0 0
\(157\) −0.339746 0.196152i −0.0271147 0.0156547i 0.486381 0.873747i \(-0.338317\pi\)
−0.513496 + 0.858092i \(0.671650\pi\)
\(158\) 0 0
\(159\) 16.3923i 1.29999i
\(160\) 0 0
\(161\) 2.66025 + 4.60770i 0.209657 + 0.363137i
\(162\) 0 0
\(163\) −9.39230 −0.735662 −0.367831 0.929893i \(-0.619900\pi\)
−0.367831 + 0.929893i \(0.619900\pi\)
\(164\) 0 0
\(165\) −10.5622 18.2942i −0.822264 1.42420i
\(166\) 0 0
\(167\) −2.53590 4.39230i −0.196234 0.339887i 0.751071 0.660222i \(-0.229538\pi\)
−0.947304 + 0.320335i \(0.896204\pi\)
\(168\) 0 0
\(169\) 6.50000 11.2583i 0.500000 0.866025i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 12.9282 22.3923i 0.982913 1.70246i 0.332047 0.943263i \(-0.392261\pi\)
0.650866 0.759193i \(-0.274406\pi\)
\(174\) 0 0
\(175\) 2.70577 1.56218i 0.204537 0.118090i
\(176\) 0 0
\(177\) −0.696152 1.20577i −0.0523260 0.0906313i
\(178\) 0 0
\(179\) 5.19615i 0.388379i −0.980964 0.194189i \(-0.937792\pi\)
0.980964 0.194189i \(-0.0622076\pi\)
\(180\) 0 0
\(181\) −2.36603 4.09808i −0.175865 0.304608i 0.764595 0.644511i \(-0.222939\pi\)
−0.940460 + 0.339903i \(0.889606\pi\)
\(182\) 0 0
\(183\) −21.1244 −1.56156
\(184\) 0 0
\(185\) 11.1962 + 6.46410i 0.823157 + 0.475250i
\(186\) 0 0
\(187\) −12.1962 + 21.1244i −0.891871 + 1.54477i
\(188\) 0 0
\(189\) 6.58846 0.479240
\(190\) 0 0
\(191\) 17.8564i 1.29204i −0.763319 0.646022i \(-0.776431\pi\)
0.763319 0.646022i \(-0.223569\pi\)
\(192\) 0 0
\(193\) −21.5885 12.4641i −1.55397 0.897186i −0.997812 0.0661096i \(-0.978941\pi\)
−0.556159 0.831076i \(-0.687725\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.80385i 0.556001i 0.960581 + 0.278001i \(0.0896717\pi\)
−0.960581 + 0.278001i \(0.910328\pi\)
\(198\) 0 0
\(199\) −10.7321 + 6.19615i −0.760775 + 0.439234i −0.829574 0.558397i \(-0.811417\pi\)
0.0687990 + 0.997631i \(0.478083\pi\)
\(200\) 0 0
\(201\) −7.39230 −0.521413
\(202\) 0 0
\(203\) 2.41154 1.39230i 0.169257 0.0977206i
\(204\) 0 0
\(205\) −10.5622 18.2942i −0.737694 1.27772i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.23205 + 19.3301i 0.154394 + 1.33709i
\(210\) 0 0
\(211\) 15.0000 + 8.66025i 1.03264 + 0.596196i 0.917741 0.397180i \(-0.130011\pi\)
0.114902 + 0.993377i \(0.463345\pi\)
\(212\) 0 0
\(213\) 3.80385 2.19615i 0.260635 0.150478i
\(214\) 0 0
\(215\) −8.19615 + 4.73205i −0.558973 + 0.322723i
\(216\) 0 0
\(217\) 2.78461i 0.189032i
\(218\) 0 0
\(219\) −7.50000 + 4.33013i −0.506803 + 0.292603i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 12.7583 22.0981i 0.854361 1.47980i −0.0228756 0.999738i \(-0.507282\pi\)
0.877237 0.480058i \(-0.159385\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.1244i 1.20296i 0.798889 + 0.601478i \(0.205421\pi\)
−0.798889 + 0.601478i \(0.794579\pi\)
\(228\) 0 0
\(229\) 12.7846i 0.844831i 0.906402 + 0.422415i \(0.138818\pi\)
−0.906402 + 0.422415i \(0.861182\pi\)
\(230\) 0 0
\(231\) 4.90192 8.49038i 0.322523 0.558626i
\(232\) 0 0
\(233\) −3.42820 + 5.93782i −0.224589 + 0.389000i −0.956196 0.292727i \(-0.905437\pi\)
0.731607 + 0.681727i \(0.238771\pi\)
\(234\) 0 0
\(235\) 26.3923 1.72164
\(236\) 0 0
\(237\) 24.5885 14.1962i 1.59719 0.922139i
\(238\) 0 0
\(239\) 5.85641i 0.378819i 0.981898 + 0.189410i \(0.0606574\pi\)
−0.981898 + 0.189410i \(0.939343\pi\)
\(240\) 0 0
\(241\) −22.2846 + 12.8660i −1.43548 + 0.828774i −0.997531 0.0702273i \(-0.977628\pi\)
−0.437947 + 0.899001i \(0.644294\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −12.7583 7.36603i −0.815100 0.470598i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −5.08846 2.93782i −0.322468 0.186177i
\(250\) 0 0
\(251\) −8.16025 14.1340i −0.515071 0.892129i −0.999847 0.0174904i \(-0.994432\pi\)
0.484776 0.874638i \(-0.338901\pi\)
\(252\) 0 0
\(253\) 16.2224 9.36603i 1.01990 0.588837i
\(254\) 0 0
\(255\) 25.8564 1.61919
\(256\) 0 0
\(257\) 11.3038 6.52628i 0.705115 0.407098i −0.104135 0.994563i \(-0.533207\pi\)
0.809250 + 0.587465i \(0.199874\pi\)
\(258\) 0 0
\(259\) 6.00000i 0.372822i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −11.8301 6.83013i −0.729477 0.421164i 0.0887539 0.996054i \(-0.471712\pi\)
−0.818231 + 0.574890i \(0.805045\pi\)
\(264\) 0 0
\(265\) 25.8564i 1.58835i
\(266\) 0 0
\(267\) 22.3923 1.37039
\(268\) 0 0
\(269\) −10.7321 + 18.5885i −0.654345 + 1.13336i 0.327713 + 0.944777i \(0.393722\pi\)
−0.982058 + 0.188581i \(0.939611\pi\)
\(270\) 0 0
\(271\) −24.7583 14.2942i −1.50396 0.868313i −0.999989 0.00459256i \(-0.998538\pi\)
−0.503972 0.863720i \(-0.668129\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5.50000 9.52628i −0.331662 0.574456i
\(276\) 0 0
\(277\) 4.19615i 0.252122i −0.992022 0.126061i \(-0.959766\pi\)
0.992022 0.126061i \(-0.0402336\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −14.8923 + 8.59808i −0.888400 + 0.512918i −0.873419 0.486970i \(-0.838102\pi\)
−0.0149815 + 0.999888i \(0.504769\pi\)
\(282\) 0 0
\(283\) −9.23205 + 15.9904i −0.548788 + 0.950529i 0.449569 + 0.893245i \(0.351577\pi\)
−0.998358 + 0.0572841i \(0.981756\pi\)
\(284\) 0 0
\(285\) 16.5622 12.2942i 0.981059 0.728247i
\(286\) 0 0
\(287\) 4.90192 8.49038i 0.289351 0.501171i
\(288\) 0 0
\(289\) −6.42820 11.1340i −0.378130 0.654940i
\(290\) 0 0
\(291\) 6.69615 + 11.5981i 0.392535 + 0.679891i
\(292\) 0 0
\(293\) 4.73205 0.276449 0.138225 0.990401i \(-0.455860\pi\)
0.138225 + 0.990401i \(0.455860\pi\)
\(294\) 0 0
\(295\) −1.09808 1.90192i −0.0639325 0.110734i
\(296\) 0 0
\(297\) 23.1962i 1.34598i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −3.80385 2.19615i −0.219250 0.126584i
\(302\) 0 0
\(303\) 28.0526 1.61158
\(304\) 0 0
\(305\) −33.3205 −1.90793
\(306\) 0 0
\(307\) 11.0885 + 6.40192i 0.632852 + 0.365377i 0.781856 0.623460i \(-0.214273\pi\)
−0.149004 + 0.988837i \(0.547607\pi\)
\(308\) 0 0
\(309\) −14.1962 8.19615i −0.807591 0.466263i
\(310\) 0 0
\(311\) 18.7321i 1.06220i 0.847310 + 0.531099i \(0.178221\pi\)
−0.847310 + 0.531099i \(0.821779\pi\)
\(312\) 0 0
\(313\) 9.69615 + 16.7942i 0.548059 + 0.949266i 0.998408 + 0.0564131i \(0.0179664\pi\)
−0.450349 + 0.892853i \(0.648700\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −15.1244 26.1962i −0.849468 1.47132i −0.881683 0.471842i \(-0.843589\pi\)
0.0322149 0.999481i \(-0.489744\pi\)
\(318\) 0 0
\(319\) −4.90192 8.49038i −0.274455 0.475370i
\(320\) 0 0
\(321\) −3.80385 + 6.58846i −0.212310 + 0.367732i
\(322\) 0 0
\(323\) −21.8564 9.46410i −1.21612 0.526597i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 3.80385 2.19615i 0.210353 0.121448i
\(328\) 0 0
\(329\) 6.12436 + 10.6077i 0.337647 + 0.584821i
\(330\) 0 0
\(331\) 31.7321i 1.74415i −0.489371 0.872076i \(-0.662774\pi\)
0.489371 0.872076i \(-0.337226\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −11.6603 −0.637068
\(336\) 0 0
\(337\) −5.89230 3.40192i −0.320974 0.185315i 0.330852 0.943682i \(-0.392664\pi\)
−0.651827 + 0.758368i \(0.725997\pi\)
\(338\) 0 0
\(339\) 13.5000 23.3827i 0.733219 1.26997i
\(340\) 0 0
\(341\) 9.80385 0.530908
\(342\) 0 0
\(343\) 15.7128i 0.848412i
\(344\) 0 0
\(345\) −17.1962 9.92820i −0.925810 0.534516i
\(346\) 0 0
\(347\) −1.23205 + 2.13397i −0.0661400 + 0.114558i −0.897199 0.441626i \(-0.854402\pi\)
0.831059 + 0.556184i \(0.187735\pi\)
\(348\) 0 0
\(349\) 34.6410i 1.85429i 0.374701 + 0.927146i \(0.377745\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 25.7846 1.37238 0.686188 0.727424i \(-0.259283\pi\)
0.686188 + 0.727424i \(0.259283\pi\)
\(354\) 0 0
\(355\) 6.00000 3.46410i 0.318447 0.183855i
\(356\) 0 0
\(357\) 6.00000 + 10.3923i 0.317554 + 0.550019i
\(358\) 0 0
\(359\) −2.02628 1.16987i −0.106943 0.0617435i 0.445575 0.895245i \(-0.352999\pi\)
−0.552517 + 0.833501i \(0.686333\pi\)
\(360\) 0 0
\(361\) −18.5000 + 4.33013i −0.973684 + 0.227901i
\(362\) 0 0
\(363\) −13.3923 7.73205i −0.702914 0.405827i
\(364\) 0 0
\(365\) −11.8301 + 6.83013i −0.619217 + 0.357505i
\(366\) 0 0
\(367\) 24.7583 14.2942i 1.29237 0.746153i 0.313300 0.949654i \(-0.398566\pi\)
0.979075 + 0.203502i \(0.0652322\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 10.3923 6.00000i 0.539542 0.311504i
\(372\) 0 0
\(373\) −6.92820 −0.358729 −0.179364 0.983783i \(-0.557404\pi\)
−0.179364 + 0.983783i \(0.557404\pi\)
\(374\) 0 0
\(375\) 6.00000 10.3923i 0.309839 0.536656i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 17.3205i 0.889695i 0.895606 + 0.444847i \(0.146742\pi\)
−0.895606 + 0.444847i \(0.853258\pi\)
\(380\) 0 0
\(381\) 4.39230i 0.225025i
\(382\) 0 0
\(383\) −8.36603 + 14.4904i −0.427484 + 0.740424i −0.996649 0.0817995i \(-0.973933\pi\)
0.569165 + 0.822223i \(0.307267\pi\)
\(384\) 0 0
\(385\) 7.73205 13.3923i 0.394062 0.682535i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −22.0526 + 12.7321i −1.11811 + 0.645541i −0.940918 0.338636i \(-0.890035\pi\)
−0.177192 + 0.984176i \(0.556701\pi\)
\(390\) 0 0
\(391\) 22.9282i 1.15953i
\(392\) 0 0
\(393\) −2.89230 + 1.66987i −0.145897 + 0.0842339i
\(394\) 0 0
\(395\) 38.7846 22.3923i 1.95147 1.12668i
\(396\) 0 0
\(397\) 30.0788 + 17.3660i 1.50961 + 0.871576i 0.999937 + 0.0112097i \(0.00356823\pi\)
0.509676 + 0.860366i \(0.329765\pi\)
\(398\) 0 0
\(399\) 8.78461 + 3.80385i 0.439781 + 0.190431i
\(400\) 0 0
\(401\) 17.0885 + 9.86603i 0.853357 + 0.492686i 0.861782 0.507279i \(-0.169349\pi\)
−0.00842522 + 0.999965i \(0.502682\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −21.2942 + 12.2942i −1.05812 + 0.610905i
\(406\) 0 0
\(407\) 21.1244 1.04710
\(408\) 0 0
\(409\) −14.3038 + 8.25833i −0.707280 + 0.408348i −0.810053 0.586357i \(-0.800562\pi\)
0.102773 + 0.994705i \(0.467228\pi\)
\(410\) 0 0
\(411\) 31.0526i 1.53171i
\(412\) 0 0
\(413\) 0.509619 0.882686i 0.0250767 0.0434341i
\(414\) 0 0
\(415\) −8.02628 4.63397i −0.393995 0.227473i
\(416\) 0 0
\(417\) 9.33975i 0.457369i
\(418\) 0 0
\(419\) 35.1769 1.71850 0.859252 0.511552i \(-0.170929\pi\)
0.859252 + 0.511552i \(0.170929\pi\)
\(420\) 0 0
\(421\) 1.09808 1.90192i 0.0535170 0.0926941i −0.838026 0.545631i \(-0.816290\pi\)
0.891543 + 0.452936i \(0.149624\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 13.4641 0.653105
\(426\) 0 0
\(427\) −7.73205 13.3923i −0.374180 0.648099i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10.7321 18.5885i −0.516945 0.895374i −0.999806 0.0196778i \(-0.993736\pi\)
0.482862 0.875697i \(-0.339597\pi\)
\(432\) 0 0
\(433\) −6.80385 + 3.92820i −0.326972 + 0.188777i −0.654496 0.756065i \(-0.727119\pi\)
0.327524 + 0.944843i \(0.393786\pi\)
\(434\) 0 0
\(435\) −5.19615 + 9.00000i −0.249136 + 0.431517i
\(436\) 0 0
\(437\) 10.9019 + 14.6865i 0.521510 + 0.702552i
\(438\) 0 0
\(439\) −9.29423 + 16.0981i −0.443589 + 0.768319i −0.997953 0.0639555i \(-0.979628\pi\)
0.554363 + 0.832275i \(0.312962\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.23205 + 2.13397i 0.0585365 + 0.101388i 0.893809 0.448449i \(-0.148023\pi\)
−0.835272 + 0.549837i \(0.814690\pi\)
\(444\) 0 0
\(445\) 35.3205 1.67435
\(446\) 0 0
\(447\) 8.36603 + 14.4904i 0.395699 + 0.685372i
\(448\) 0 0
\(449\) 10.5167i 0.496312i −0.968720 0.248156i \(-0.920175\pi\)
0.968720 0.248156i \(-0.0798245\pi\)
\(450\) 0 0
\(451\) −29.8923 17.2583i −1.40757 0.812663i
\(452\) 0 0
\(453\) −25.0981 14.4904i −1.17921 0.680817i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −24.1769 −1.13095 −0.565474 0.824766i \(-0.691307\pi\)
−0.565474 + 0.824766i \(0.691307\pi\)
\(458\) 0 0
\(459\) 24.5885 + 14.1962i 1.14769 + 0.662620i
\(460\) 0 0
\(461\) −11.6603 6.73205i −0.543072 0.313543i 0.203251 0.979127i \(-0.434849\pi\)
−0.746323 + 0.665584i \(0.768183\pi\)
\(462\) 0 0
\(463\) 16.7846i 0.780047i 0.920805 + 0.390023i \(0.127533\pi\)
−0.920805 + 0.390023i \(0.872467\pi\)
\(464\) 0 0
\(465\) −5.19615 9.00000i −0.240966 0.417365i
\(466\) 0 0
\(467\) −4.46410 −0.206574 −0.103287 0.994652i \(-0.532936\pi\)
−0.103287 + 0.994652i \(0.532936\pi\)
\(468\) 0 0
\(469\) −2.70577 4.68653i −0.124941 0.216404i
\(470\) 0 0
\(471\) 0.339746 + 0.588457i 0.0156547 + 0.0271147i
\(472\) 0 0
\(473\) −7.73205 + 13.3923i −0.355520 + 0.615779i
\(474\) 0 0
\(475\) 8.62436 6.40192i 0.395713 0.293740i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −25.2679 + 14.5885i −1.15452 + 0.666564i −0.949985 0.312295i \(-0.898902\pi\)
−0.204537 + 0.978859i \(0.565569\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 9.21539i 0.419315i
\(484\) 0 0
\(485\) 10.5622 + 18.2942i 0.479604 + 0.830698i
\(486\) 0 0
\(487\) 33.1244 1.50101 0.750504 0.660866i \(-0.229811\pi\)
0.750504 + 0.660866i \(0.229811\pi\)
\(488\) 0 0
\(489\) 14.0885 + 8.13397i 0.637102 + 0.367831i
\(490\) 0 0
\(491\) −11.5885 + 20.0718i −0.522980 + 0.905828i 0.476663 + 0.879086i \(0.341846\pi\)
−0.999642 + 0.0267412i \(0.991487\pi\)
\(492\) 0 0
\(493\) 12.0000 0.540453
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.78461 + 1.60770i 0.124907 + 0.0721150i
\(498\) 0 0
\(499\) −15.0885 + 26.1340i −0.675452 + 1.16992i 0.300884 + 0.953661i \(0.402718\pi\)
−0.976337 + 0.216257i \(0.930615\pi\)
\(500\) 0 0
\(501\) 8.78461i 0.392467i
\(502\) 0 0
\(503\) −25.4378 + 14.6865i −1.13422 + 0.654840i −0.944992 0.327094i \(-0.893931\pi\)
−0.189225 + 0.981934i \(0.560597\pi\)
\(504\) 0 0
\(505\) 44.2487 1.96904
\(506\) 0 0
\(507\) −19.5000 + 11.2583i −0.866025 + 0.500000i
\(508\) 0 0
\(509\) −13.8564 24.0000i −0.614174 1.06378i −0.990529 0.137305i \(-0.956156\pi\)
0.376354 0.926476i \(-0.377178\pi\)
\(510\) 0 0
\(511\) −5.49038 3.16987i −0.242880 0.140227i
\(512\) 0 0
\(513\) 22.5000 2.59808i 0.993399 0.114708i
\(514\) 0 0
\(515\) −22.3923 12.9282i −0.986723 0.569685i
\(516\) 0 0
\(517\) 37.3468 21.5622i 1.64251 0.948303i
\(518\) 0 0
\(519\) −38.7846 + 22.3923i −1.70246 + 0.982913i
\(520\) 0 0
\(521\) 19.0526i 0.834708i 0.908744 + 0.417354i \(0.137042\pi\)
−0.908744 + 0.417354i \(0.862958\pi\)
\(522\) 0 0
\(523\) −16.9808 + 9.80385i −0.742517 + 0.428692i −0.822984 0.568065i \(-0.807692\pi\)
0.0804668 + 0.996757i \(0.474359\pi\)
\(524\) 0 0
\(525\) −5.41154 −0.236179
\(526\) 0 0
\(527\) −6.00000 + 10.3923i −0.261364 + 0.452696i
\(528\) 0 0
\(529\) −2.69615 + 4.66987i −0.117224 + 0.203038i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −6.00000 + 10.3923i −0.259403 + 0.449299i
\(536\) 0 0
\(537\) −4.50000 + 7.79423i −0.194189 + 0.336346i
\(538\) 0 0
\(539\) −24.0718 −1.03685
\(540\) 0 0
\(541\) −0.588457 + 0.339746i −0.0252998 + 0.0146068i −0.512597 0.858630i \(-0.671316\pi\)
0.487297 + 0.873236i \(0.337983\pi\)
\(542\) 0 0
\(543\) 8.19615i 0.351731i
\(544\) 0 0
\(545\) 6.00000 3.46410i 0.257012 0.148386i
\(546\) 0 0
\(547\) −14.1962 + 8.19615i −0.606984 + 0.350442i −0.771784 0.635885i \(-0.780635\pi\)
0.164800 + 0.986327i \(0.447302\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.68653 5.70577i 0.327457 0.243074i
\(552\) 0 0
\(553\) 18.0000 + 10.3923i 0.765438 + 0.441926i
\(554\) 0 0
\(555\) −11.1962 19.3923i −0.475250 0.823157i
\(556\) 0 0
\(557\) −8.53590 + 4.92820i −0.361678 + 0.208815i −0.669816 0.742527i \(-0.733627\pi\)
0.308139 + 0.951341i \(0.400294\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 36.5885 21.1244i 1.54477 0.891871i
\(562\) 0 0
\(563\) 35.1962i 1.48334i −0.670764 0.741670i \(-0.734034\pi\)
0.670764 0.741670i \(-0.265966\pi\)
\(564\) 0 0
\(565\) 21.2942 36.8827i 0.895855 1.55167i
\(566\) 0 0
\(567\) −9.88269 5.70577i −0.415034 0.239620i
\(568\) 0 0
\(569\) 0.928203i 0.0389123i −0.999811 0.0194562i \(-0.993807\pi\)
0.999811 0.0194562i \(-0.00619348\pi\)
\(570\) 0 0
\(571\) −4.60770 −0.192826 −0.0964130 0.995341i \(-0.530737\pi\)
−0.0964130 + 0.995341i \(0.530737\pi\)
\(572\) 0 0
\(573\) −15.4641 + 26.7846i −0.646022 + 1.11894i
\(574\) 0 0
\(575\) −8.95448 5.16987i −0.373428 0.215599i
\(576\) 0 0
\(577\) 10.8564 0.451958 0.225979 0.974132i \(-0.427442\pi\)
0.225979 + 0.974132i \(0.427442\pi\)
\(578\) 0 0
\(579\) 21.5885 + 37.3923i 0.897186 + 1.55397i
\(580\) 0 0
\(581\) 4.30127i 0.178447i
\(582\) 0 0
\(583\) −21.1244 36.5885i −0.874881 1.51534i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.26795 3.92820i 0.0936083 0.162134i −0.815419 0.578872i \(-0.803493\pi\)
0.909027 + 0.416737i \(0.136827\pi\)
\(588\) 0 0
\(589\) 1.09808 + 9.50962i 0.0452454 + 0.391837i
\(590\) 0 0
\(591\) 6.75833 11.7058i 0.278001 0.481511i
\(592\) 0 0
\(593\) 20.6962 + 35.8468i 0.849889 + 1.47205i 0.881307 + 0.472545i \(0.156665\pi\)
−0.0314175 + 0.999506i \(0.510002\pi\)
\(594\) 0 0
\(595\) 9.46410 + 16.3923i 0.387990 + 0.672019i
\(596\) 0 0
\(597\) 21.4641 0.878467
\(598\) 0 0
\(599\) 3.29423 + 5.70577i 0.134599 + 0.233131i 0.925444 0.378884i \(-0.123692\pi\)
−0.790845 + 0.612016i \(0.790359\pi\)
\(600\) 0 0
\(601\) 13.7321i 0.560142i 0.959979 + 0.280071i \(0.0903580\pi\)
−0.959979 + 0.280071i \(0.909642\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −21.1244 12.1962i −0.858827 0.495844i
\(606\) 0 0
\(607\) 42.5885 1.72861 0.864306 0.502966i \(-0.167758\pi\)
0.864306 + 0.502966i \(0.167758\pi\)
\(608\) 0 0
\(609\) −4.82309 −0.195441
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −17.3205 10.0000i −0.699569 0.403896i 0.107618 0.994192i \(-0.465678\pi\)
−0.807187 + 0.590296i \(0.799011\pi\)
\(614\) 0 0
\(615\) 36.5885i 1.47539i
\(616\) 0 0
\(617\) 5.16025 + 8.93782i 0.207744 + 0.359823i 0.951004 0.309180i \(-0.100055\pi\)
−0.743260 + 0.669003i \(0.766721\pi\)
\(618\) 0 0
\(619\) −30.3923 −1.22157 −0.610785 0.791797i \(-0.709146\pi\)
−0.610785 + 0.791797i \(0.709146\pi\)
\(620\) 0 0
\(621\) −10.9019 18.8827i −0.437479 0.757736i
\(622\) 0 0
\(623\) 8.19615 + 14.1962i 0.328372 + 0.568757i
\(624\) 0 0
\(625\) 15.6244 27.0622i 0.624974 1.08249i
\(626\) 0 0
\(627\) 13.3923 30.9282i 0.534837 1.23515i
\(628\) 0 0
\(629\) −12.9282 + 22.3923i −0.515481 + 0.892840i
\(630\) 0 0
\(631\) 32.2750 18.6340i 1.28485 0.741807i 0.307117 0.951672i \(-0.400636\pi\)
0.977730 + 0.209865i \(0.0673025\pi\)
\(632\) 0 0
\(633\) −15.0000 25.9808i −0.596196 1.03264i
\(634\) 0 0
\(635\) 6.92820i 0.274937i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 31.5000 + 18.1865i 1.24418 + 0.718325i 0.969942 0.243338i \(-0.0782425\pi\)
0.274234 + 0.961663i \(0.411576\pi\)
\(642\) 0 0
\(643\) −19.9641 + 34.5788i −0.787307 + 1.36366i 0.140304 + 0.990109i \(0.455192\pi\)
−0.927611 + 0.373548i \(0.878141\pi\)
\(644\) 0 0
\(645\) 16.3923 0.645446
\(646\) 0 0
\(647\) 33.8564i 1.33103i 0.746383 + 0.665516i \(0.231789\pi\)
−0.746383 + 0.665516i \(0.768211\pi\)
\(648\) 0 0
\(649\) −3.10770 1.79423i −0.121988 0.0704296i
\(650\) 0 0
\(651\) 2.41154 4.17691i 0.0945158 0.163706i
\(652\) 0 0
\(653\) 3.32051i 0.129942i −0.997887 0.0649708i \(-0.979305\pi\)
0.997887 0.0649708i \(-0.0206954\pi\)
\(654\) 0 0
\(655\) −4.56218 + 2.63397i −0.178259 + 0.102918i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −33.3731 + 19.2679i −1.30003 + 0.750573i −0.980409 0.196973i \(-0.936889\pi\)
−0.319621 + 0.947545i \(0.603556\pi\)
\(660\) 0 0
\(661\) 18.7583 + 32.4904i 0.729614 + 1.26373i 0.957046 + 0.289935i \(0.0936338\pi\)
−0.227432 + 0.973794i \(0.573033\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 13.8564 + 6.00000i 0.537328 + 0.232670i
\(666\) 0 0
\(667\) −7.98076 4.60770i −0.309016 0.178411i
\(668\) 0 0
\(669\) −38.2750 + 22.0981i −1.47980 + 0.854361i
\(670\) 0 0
\(671\) −47.1506 + 27.2224i −1.82023 + 1.05091i
\(672\) 0 0
\(673\) 0.928203i 0.0357796i −0.999840 0.0178898i \(-0.994305\pi\)
0.999840 0.0178898i \(-0.00569480\pi\)
\(674\) 0 0
\(675\) −11.0885 + 6.40192i −0.426795 + 0.246410i
\(676\) 0 0
\(677\) −3.21539 −0.123577 −0.0617887 0.998089i \(-0.519681\pi\)
−0.0617887 + 0.998089i \(0.519681\pi\)
\(678\) 0 0
\(679\) −4.90192 + 8.49038i −0.188119 + 0.325831i
\(680\) 0 0
\(681\) 15.6962 27.1865i 0.601478 1.04179i
\(682\) 0 0
\(683\) 51.0333i 1.95274i −0.216115 0.976368i \(-0.569339\pi\)
0.216115 0.976368i \(-0.430661\pi\)
\(684\) 0 0
\(685\) 48.9808i 1.87146i
\(686\) 0 0
\(687\) 11.0718 19.1769i 0.422415 0.731645i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −17.3205 −0.658903 −0.329452 0.944172i \(-0.606864\pi\)
−0.329452 + 0.944172i \(0.606864\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 14.7321i 0.558819i
\(696\) 0 0
\(697\) 36.5885 21.1244i 1.38589 0.800142i
\(698\) 0 0
\(699\) 10.2846 5.93782i 0.389000 0.224589i
\(700\) 0 0
\(701\) −24.4186 14.0981i −0.922277 0.532477i −0.0379164 0.999281i \(-0.512072\pi\)
−0.884361 + 0.466804i \(0.845405\pi\)
\(702\) 0 0
\(703\) 2.36603 + 20.4904i 0.0892363 + 0.772809i
\(704\) 0 0
\(705\) −39.5885 22.8564i −1.49099 0.860822i
\(706\) 0 0
\(707\) 10.2679 + 17.7846i 0.386166 + 0.668859i
\(708\) 0 0
\(709\) −31.6865 + 18.2942i −1.19001 + 0.687054i −0.958309 0.285732i \(-0.907763\pi\)
−0.231703 + 0.972787i \(0.574430\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 7.98076 4.60770i 0.298882 0.172560i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 5.07180 8.78461i 0.189410 0.328067i
\(718\) 0 0
\(719\) −19.8564 11.4641i −0.740519 0.427539i 0.0817390 0.996654i \(-0.473953\pi\)
−0.822258 + 0.569115i \(0.807286\pi\)
\(720\) 0 0
\(721\) 12.0000i 0.446903i
\(722\) 0 0
\(723\) 44.5692 1.65755
\(724\) 0 0
\(725\) −2.70577 + 4.68653i −0.100490 + 0.174053i
\(726\) 0 0
\(727\) 0.679492 + 0.392305i 0.0252010 + 0.0145498i 0.512548 0.858659i \(-0.328702\pi\)
−0.487347 + 0.873209i \(0.662035\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −9.46410 16.3923i −0.350042 0.606291i
\(732\) 0 0
\(733\) 24.5885i 0.908195i −0.890952 0.454098i \(-0.849962\pi\)
0.890952 0.454098i \(-0.150038\pi\)
\(734\) 0 0
\(735\) 12.7583 + 22.0981i 0.470598 + 0.815100i
\(736\) 0 0
\(737\) −16.5000 + 9.52628i −0.607785 + 0.350905i
\(738\) 0 0
\(739\) 21.8923 37.9186i 0.805321 1.39486i −0.110752 0.993848i \(-0.535326\pi\)
0.916074 0.401010i \(-0.131341\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 4.22243 7.31347i 0.154906 0.268305i −0.778119 0.628117i \(-0.783826\pi\)
0.933025 + 0.359812i \(0.117159\pi\)
\(744\) 0 0
\(745\) 13.1962 + 22.8564i 0.483470 + 0.837394i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5.56922 −0.203495
\(750\) 0 0
\(751\) −0.928203 1.60770i −0.0338706 0.0586656i 0.848593 0.529046i \(-0.177450\pi\)
−0.882464 + 0.470380i \(0.844117\pi\)
\(752\) 0 0
\(753\) 28.2679i 1.03014i
\(754\) 0 0
\(755\) −39.5885 22.8564i −1.44077 0.831830i
\(756\) 0 0
\(757\) −14.5359 8.39230i −0.528316 0.305024i 0.212014 0.977267i \(-0.431998\pi\)
−0.740331 + 0.672243i \(0.765331\pi\)
\(758\) 0 0
\(759\) −32.4449 −1.17767
\(760\) 0 0
\(761\) −6.85641 −0.248545 −0.124272 0.992248i \(-0.539660\pi\)
−0.124272 + 0.992248i \(0.539660\pi\)
\(762\) 0 0
\(763\) 2.78461 + 1.60770i 0.100810 + 0.0582025i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 21.1244 + 36.5885i 0.761764 + 1.31941i 0.941941 + 0.335779i \(0.109000\pi\)
−0.180177 + 0.983634i \(0.557667\pi\)
\(770\) 0 0
\(771\) −22.6077 −0.814196
\(772\) 0 0
\(773\) 12.7583 + 22.0981i 0.458885 + 0.794813i 0.998902 0.0468415i \(-0.0149156\pi\)
−0.540017 + 0.841654i \(0.681582\pi\)
\(774\) 0 0
\(775\) −2.70577 4.68653i −0.0971942 0.168345i
\(776\) 0 0
\(777\) 5.19615 9.00000i 0.186411 0.322873i
\(778\) 0 0
\(779\) 13.3923 30.9282i 0.479829 1.10812i
\(780\) 0 0
\(781\) 5.66025 9.80385i 0.202540 0.350809i
\(782\) 0 0
\(783\) −9.88269 + 5.70577i −0.353178 + 0.203908i
\(784\) 0 0
\(785\) 0.535898 + 0.928203i 0.0191270 + 0.0331290i
\(786\) 0 0
\(787\) 30.8038i 1.09804i −0.835810 0.549019i \(-0.815001\pi\)
0.835810 0.549019i \(-0.184999\pi\)
\(788\) 0 0
\(789\) 11.8301 + 20.4904i 0.421164 + 0.729477i
\(790\) 0 0
\(791\) 19.7654 0.702776
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −22.3923 + 38.7846i −0.794173 + 1.37555i
\(796\) 0 0
\(797\) 28.7321 1.01774 0.508871 0.860843i \(-0.330063\pi\)
0.508871 + 0.860843i \(0.330063\pi\)
\(798\) 0 0
\(799\) 52.7846i 1.86739i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −11.1603 + 19.3301i −0.393837 + 0.682145i
\(804\) 0 0
\(805\) 14.5359i 0.512323i
\(806\) 0 0
\(807\) 32.1962 18.5885i 1.13336 0.654345i
\(808\) 0 0
\(809\) −0.320508 −0.0112685 −0.00563423 0.999984i \(-0.501793\pi\)
−0.00563423 + 0.999984i \(0.501793\pi\)
\(810\) 0 0
\(811\) 40.9808 23.6603i 1.43903 0.830824i 0.441247 0.897386i \(-0.354536\pi\)
0.997782 + 0.0665619i \(0.0212030\pi\)
\(812\) 0 0
\(813\) 24.7583 + 42.8827i 0.868313 + 1.50396i
\(814\) 0 0
\(815\) 22.2224 + 12.8301i 0.778418 + 0.449420i
\(816\) 0 0
\(817\) −13.8564 6.00000i −0.484774 0.209913i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 36.8372 21.2679i 1.28563 0.742257i 0.307755 0.951466i \(-0.400422\pi\)
0.977871 + 0.209209i \(0.0670889\pi\)
\(822\) 0 0
\(823\) 46.9808 27.1244i 1.63765 0.945496i 0.656006 0.754756i \(-0.272245\pi\)
0.981641 0.190740i \(-0.0610887\pi\)
\(824\) 0 0
\(825\) 19.0526i 0.663325i
\(826\) 0 0
\(827\) −27.6962 + 15.9904i −0.963090 + 0.556040i −0.897123 0.441782i \(-0.854347\pi\)
−0.0659670 + 0.997822i \(0.521013\pi\)
\(828\) 0 0
\(829\) −40.3923 −1.40288 −0.701441 0.712727i \(-0.747460\pi\)
−0.701441 + 0.712727i \(0.747460\pi\)
\(830\) 0 0
\(831\) −3.63397 + 6.29423i −0.126061 + 0.218344i
\(832\) 0 0
\(833\) 14.7321 25.5167i 0.510435 0.884100i
\(834\) 0 0
\(835\) 13.8564i 0.479521i
\(836\) 0 0
\(837\) 11.4115i 0.394441i
\(838\) 0 0
\(839\) −10.9019 + 18.8827i −0.376376 + 0.651903i −0.990532 0.137282i \(-0.956163\pi\)
0.614156 + 0.789185i \(0.289497\pi\)
\(840\) 0 0
\(841\) 12.0885 20.9378i 0.416843 0.721994i
\(842\) 0 0
\(843\) 29.7846 1.02584
\(844\) 0 0
\(845\) −30.7583 + 17.7583i −1.05812 + 0.610905i
\(846\) 0 0
\(847\) 11.3205i 0.388977i
\(848\) 0 0
\(849\) 27.6962 15.9904i 0.950529 0.548788i
\(850\) 0 0
\(851\) 17.1962 9.92820i 0.589477 0.340334i
\(852\) 0 0
\(853\) −13.1769 7.60770i −0.451169 0.260483i 0.257155 0.966370i \(-0.417215\pi\)
−0.708324 + 0.705888i \(0.750548\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.50000 2.59808i −0.153717 0.0887486i 0.421168 0.906982i \(-0.361620\pi\)
−0.574886 + 0.818234i \(0.694953\pi\)
\(858\) 0 0
\(859\) 7.69615 + 13.3301i 0.262589 + 0.454818i 0.966929 0.255045i \(-0.0820902\pi\)
−0.704340 + 0.709863i \(0.748757\pi\)
\(860\) 0 0
\(861\) −14.7058 + 8.49038i −0.501171 + 0.289351i
\(862\) 0 0
\(863\) 8.44486 0.287467 0.143733 0.989616i \(-0.454089\pi\)
0.143733 + 0.989616i \(0.454089\pi\)
\(864\) 0 0
\(865\) −61.1769 + 35.3205i −2.08008 + 1.20093i
\(866\) 0 0
\(867\) 22.2679i 0.756259i
\(868\) 0 0
\(869\) 36.5885 63.3731i 1.24118 2.14978i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 8.78461 0.296974
\(876\) 0 0
\(877\) −16.5622 + 28.6865i −0.559265 + 0.968675i 0.438293 + 0.898832i \(0.355583\pi\)
−0.997558 + 0.0698432i \(0.977750\pi\)
\(878\) 0 0
\(879\) −7.09808 4.09808i −0.239412 0.138225i
\(880\) 0 0
\(881\) −19.5359 −0.658181 −0.329091 0.944298i \(-0.606742\pi\)
−0.329091 + 0.944298i \(0.606742\pi\)
\(882\) 0 0
\(883\) −3.50000 6.06218i −0.117784 0.204009i 0.801105 0.598524i \(-0.204246\pi\)
−0.918889 + 0.394515i \(0.870912\pi\)
\(884\) 0 0
\(885\) 3.80385i 0.127865i
\(886\) 0 0
\(887\) −24.2487 42.0000i −0.814192 1.41022i −0.909907 0.414813i \(-0.863847\pi\)
0.0957146 0.995409i \(-0.469486\pi\)
\(888\) 0 0
\(889\) −2.78461 + 1.60770i −0.0933928 + 0.0539204i
\(890\) 0 0
\(891\) −20.0885 + 34.7942i −0.672989 + 1.16565i
\(892\) 0 0
\(893\) 25.0981 + 33.8109i 0.839875 + 1.13144i
\(894\) 0 0
\(895\) −7.09808 + 12.2942i −0.237263 + 0.410951i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.41154 4.17691i −0.0804295 0.139308i
\(900\) 0 0
\(901\) 51.7128 1.72280
\(902\) 0 0
\(903\) 3.80385 + 6.58846i 0.126584 + 0.219250i
\(904\) 0 0
\(905\) 12.9282i 0.429748i
\(906\) 0 0
\(907\) 46.5000 + 26.8468i 1.54401 + 0.891433i 0.998580 + 0.0532748i \(0.0169659\pi\)
0.545427 + 0.838158i \(0.316367\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −49.5167 −1.64056 −0.820280 0.571962i \(-0.806182\pi\)
−0.820280 + 0.571962i \(0.806182\pi\)
\(912\) 0 0
\(913\) −15.1436 −0.501180
\(914\) 0 0
\(915\) 49.9808 + 28.8564i 1.65231 + 0.953963i
\(916\) 0 0
\(917\) −2.11731 1.22243i −0.0699199 0.0403683i
\(918\) 0 0
\(919\) 8.78461i 0.289778i −0.989448 0.144889i \(-0.953718\pi\)
0.989448 0.144889i \(-0.0462824\pi\)
\(920\) 0 0
\(921\) −11.0885 19.2058i −0.365377 0.632852i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −5.83013 10.0981i −0.191693 0.332023i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −19.0885 + 33.0622i −0.626272 + 1.08473i 0.362021 + 0.932170i \(0.382087\pi\)
−0.988293 + 0.152565i \(0.951247\pi\)
\(930\) 0 0
\(931\) −2.69615 23.3494i −0.0883628 0.765245i
\(932\) 0 0
\(933\) 16.2224 28.0981i 0.531099 0.919890i
\(934\) 0 0
\(935\) 57.7128 33.3205i 1.88741 1.08970i
\(936\) 0 0
\(937\) −24.8923 43.1147i −0.813196 1.40850i −0.910616 0.413254i \(-0.864392\pi\)
0.0974198 0.995243i \(-0.468941\pi\)
\(938\) 0 0
\(939\) 33.5885i 1.09612i
\(940\) 0 0
\(941\) −19.5167 33.8038i −0.636225 1.10197i −0.986254 0.165235i \(-0.947162\pi\)
0.350029 0.936739i \(-0.386172\pi\)
\(942\) 0 0
\(943\) −32.4449 −1.05655
\(944\) 0 0
\(945\) −15.5885 9.00000i −0.507093 0.292770i
\(946\) 0 0
\(947\) 2.80385 4.85641i 0.0911128 0.157812i −0.816867 0.576826i \(-0.804291\pi\)
0.907980 + 0.419014i \(0.137624\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 52.3923i 1.69894i
\(952\) 0 0
\(953\) 14.3038 + 8.25833i 0.463347 + 0.267514i 0.713451 0.700706i \(-0.247131\pi\)
−0.250104 + 0.968219i \(0.580465\pi\)
\(954\) 0 0
\(955\) −24.3923 + 42.2487i −0.789316 + 1.36714i
\(956\) 0 0
\(957\) 16.9808i 0.548910i
\(958\) 0 0
\(959\) −19.6865 + 11.3660i −0.635711 + 0.367028i
\(960\) 0 0
\(961\) −26.1769 −0.844417
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 34.0526 + 58.9808i 1.09619 + 1.89866i
\(966\) 0 0
\(967\) −10.3923 6.00000i −0.334194 0.192947i 0.323508 0.946226i \(-0.395138\pi\)
−0.657702 + 0.753279i \(0.728471\pi\)
\(968\) 0 0
\(969\) 24.5885 + 33.1244i 0.789895 + 1.06411i
\(970\) 0 0
\(971\) 9.10770 + 5.25833i 0.292280 + 0.168748i 0.638970 0.769232i \(-0.279361\pi\)
−0.346690 + 0.937980i \(0.612694\pi\)
\(972\) 0 0
\(973\) 5.92116 3.41858i 0.189824 0.109595i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 16.2679i 0.520458i −0.965547 0.260229i \(-0.916202\pi\)
0.965547 0.260229i \(-0.0837980\pi\)
\(978\) 0 0
\(979\) 49.9808 28.8564i 1.59739 0.922255i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −12.5885 + 21.8038i −0.401509 + 0.695435i −0.993908 0.110210i \(-0.964848\pi\)
0.592399 + 0.805645i \(0.298181\pi\)
\(984\) 0 0
\(985\) 10.6603 18.4641i 0.339664 0.588315i
\(986\) 0 0
\(987\) 21.2154i 0.675293i
\(988\) 0 0
\(989\) 14.5359i 0.462215i
\(990\) 0 0
\(991\) −16.0526 + 27.8038i −0.509926 + 0.883218i 0.490008 + 0.871718i \(0.336994\pi\)
−0.999934 + 0.0115001i \(0.996339\pi\)
\(992\) 0 0
\(993\) −27.4808 + 47.5981i −0.872076 + 1.51048i
\(994\) 0 0
\(995\) 33.8564 1.07332
\(996\) 0 0
\(997\) 10.5622 6.09808i 0.334508 0.193128i −0.323333 0.946285i \(-0.604803\pi\)
0.657841 + 0.753157i \(0.271470\pi\)
\(998\) 0 0
\(999\) 24.5885i 0.777944i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.2.s.a.863.1 yes 4
4.3 odd 2 1216.2.s.e.863.1 yes 4
8.3 odd 2 1216.2.s.b.863.2 yes 4
8.5 even 2 1216.2.s.f.863.2 yes 4
19.12 odd 6 1216.2.s.b.31.2 yes 4
76.31 even 6 1216.2.s.f.31.2 yes 4
152.69 odd 6 1216.2.s.e.31.1 yes 4
152.107 even 6 inner 1216.2.s.a.31.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1216.2.s.a.31.1 4 152.107 even 6 inner
1216.2.s.a.863.1 yes 4 1.1 even 1 trivial
1216.2.s.b.31.2 yes 4 19.12 odd 6
1216.2.s.b.863.2 yes 4 8.3 odd 2
1216.2.s.e.31.1 yes 4 152.69 odd 6
1216.2.s.e.863.1 yes 4 4.3 odd 2
1216.2.s.f.31.2 yes 4 76.31 even 6
1216.2.s.f.863.2 yes 4 8.5 even 2