L(s) = 1 | + (−0.0535 + 1.41i)2-s + (−1.99 − 0.151i)4-s + 3.17·5-s + 2.51i·7-s + (0.320 − 2.81i)8-s + (−0.170 + 4.48i)10-s + 5.40·11-s + 3.61i·13-s + (−3.55 − 0.134i)14-s + (3.95 + 0.604i)16-s + (4.09 − 0.442i)17-s − 6.87i·19-s + (−6.32 − 0.480i)20-s + (−0.289 + 7.63i)22-s − 7.54i·23-s + ⋯ |
L(s) = 1 | + (−0.0378 + 0.999i)2-s + (−0.997 − 0.0757i)4-s + 1.41·5-s + 0.950i·7-s + (0.113 − 0.993i)8-s + (−0.0537 + 1.41i)10-s + 1.62·11-s + 1.00i·13-s + (−0.950 − 0.0360i)14-s + (0.988 + 0.151i)16-s + (0.994 − 0.107i)17-s − 1.57i·19-s + (−1.41 − 0.107i)20-s + (−0.0616 + 1.62i)22-s − 1.57i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.00613 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.00613 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.104136351\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.104136351\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.0535 - 1.41i)T \) |
| 3 | \( 1 \) |
| 17 | \( 1 + (-4.09 + 0.442i)T \) |
good | 5 | \( 1 - 3.17T + 5T^{2} \) |
| 7 | \( 1 - 2.51iT - 7T^{2} \) |
| 11 | \( 1 - 5.40T + 11T^{2} \) |
| 13 | \( 1 - 3.61iT - 13T^{2} \) |
| 19 | \( 1 + 6.87iT - 19T^{2} \) |
| 23 | \( 1 + 7.54iT - 23T^{2} \) |
| 29 | \( 1 + 3.32T + 29T^{2} \) |
| 31 | \( 1 + 1.30iT - 31T^{2} \) |
| 37 | \( 1 + 6.65T + 37T^{2} \) |
| 41 | \( 1 - 5.04iT - 41T^{2} \) |
| 43 | \( 1 - 5.85iT - 43T^{2} \) |
| 47 | \( 1 - 8.02T + 47T^{2} \) |
| 53 | \( 1 - 7.67iT - 53T^{2} \) |
| 59 | \( 1 + 4.23iT - 59T^{2} \) |
| 61 | \( 1 + 3.88T + 61T^{2} \) |
| 67 | \( 1 - 10.8iT - 67T^{2} \) |
| 71 | \( 1 - 4.23iT - 71T^{2} \) |
| 73 | \( 1 + 0.674iT - 73T^{2} \) |
| 79 | \( 1 - 1.43iT - 79T^{2} \) |
| 83 | \( 1 + 16.1iT - 83T^{2} \) |
| 89 | \( 1 + 9.77T + 89T^{2} \) |
| 97 | \( 1 + 0.954iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.397556236642408969500842509673, −9.194933736409888118195694273740, −8.574913454565965686351914669409, −7.16402845033408987271518146305, −6.46895927384375199957976337695, −5.96607649428164212234986528996, −5.06894587217374797174599727307, −4.15635543826667498654138355711, −2.63959332976634910062877693883, −1.34846178451999697279671966892,
1.18306936576863847619699125484, 1.81623638217951229401406610885, 3.43567582120266322221596719305, 3.88708746048428167482953540274, 5.42791301600297528611636443845, 5.80132768144355970857603234474, 7.09656834028383250872471737251, 8.048516287924749615065376550781, 9.112807752492029442868731755056, 9.713105748506745674322356736686