Properties

Label 1224.2.l.d
Level 12241224
Weight 22
Character orbit 1224.l
Analytic conductor 9.7749.774
Analytic rank 00
Dimension 1818
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(1189,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.1189");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1224=233217 1224 = 2^{3} \cdot 3^{2} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1224.l (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.773689207409.77368920740
Analytic rank: 00
Dimension: 1818
Coefficient field: Q[x]/(x18)\mathbb{Q}[x]/(x^{18} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x18x162x14+2x124x11+4x10+8x816x7+16x664x4128x2+512 x^{18} - x^{16} - 2x^{14} + 2x^{12} - 4x^{11} + 4x^{10} + 8x^{8} - 16x^{7} + 16x^{6} - 64x^{4} - 128x^{2} + 512 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 28 2^{8}
Twist minimal: no (minimal twist has level 408)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β171,\beta_1,\ldots,\beta_{17} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β5q2β2q4β9q5+β15q7+β4q8+β8q10β12q11β13q13+(β16β15+β10)q14++(2β15+2β11++2)q98+O(q100) q + \beta_{5} q^{2} - \beta_{2} q^{4} - \beta_{9} q^{5} + \beta_{15} q^{7} + \beta_{4} q^{8} + \beta_{8} q^{10} - \beta_{12} q^{11} - \beta_{13} q^{13} + (\beta_{16} - \beta_{15} + \cdots - \beta_{10}) q^{14}+ \cdots + (2 \beta_{15} + 2 \beta_{11} + \cdots + 2) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 18q+2q4+4q58q10+6q14+10q16+2q17+2q20+2q22+22q252q2610q2812q29+6q3416q37+34q3810q4012q44+32q46++60q98+O(q100) 18 q + 2 q^{4} + 4 q^{5} - 8 q^{10} + 6 q^{14} + 10 q^{16} + 2 q^{17} + 2 q^{20} + 2 q^{22} + 22 q^{25} - 2 q^{26} - 10 q^{28} - 12 q^{29} + 6 q^{34} - 16 q^{37} + 34 q^{38} - 10 q^{40} - 12 q^{44} + 32 q^{46}+ \cdots + 60 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x18x162x14+2x124x11+4x10+8x816x7+16x664x4128x2+512 x^{18} - x^{16} - 2x^{14} + 2x^{12} - 4x^{11} + 4x^{10} + 8x^{8} - 16x^{7} + 16x^{6} - 64x^{4} - 128x^{2} + 512 : Copy content Toggle raw display

β1\beta_{1}== 2ν 2\nu Copy content Toggle raw display
β2\beta_{2}== (ν16ν142ν12+2ν104ν9+4ν8+8ν616ν5+128)/128 ( \nu^{16} - \nu^{14} - 2 \nu^{12} + 2 \nu^{10} - 4 \nu^{9} + 4 \nu^{8} + 8 \nu^{6} - 16 \nu^{5} + \cdots - 128 ) / 128 Copy content Toggle raw display
β3\beta_{3}== (ν16ν14+4ν132ν12+4ν11+2ν104ν9+4ν8+256)/128 ( \nu^{16} - \nu^{14} + 4 \nu^{13} - 2 \nu^{12} + 4 \nu^{11} + 2 \nu^{10} - 4 \nu^{9} + 4 \nu^{8} + \cdots - 256 ) / 128 Copy content Toggle raw display
β4\beta_{4}== (ν173ν15+6ν13+6ν11+4ν1012ν9+16ν8++384ν)/256 ( - \nu^{17} - 3 \nu^{15} + 6 \nu^{13} + 6 \nu^{11} + 4 \nu^{10} - 12 \nu^{9} + 16 \nu^{8} + \cdots + 384 \nu ) / 256 Copy content Toggle raw display
β5\beta_{5}== (ν17+ν15+2ν132ν11+4ν104ν98ν7+16ν6++128ν)/256 ( - \nu^{17} + \nu^{15} + 2 \nu^{13} - 2 \nu^{11} + 4 \nu^{10} - 4 \nu^{9} - 8 \nu^{7} + 16 \nu^{6} + \cdots + 128 \nu ) / 256 Copy content Toggle raw display
β6\beta_{6}== (ν15+2ν143ν13+2ν122ν112ν98ν8+12ν7++128)/64 ( - \nu^{15} + 2 \nu^{14} - 3 \nu^{13} + 2 \nu^{12} - 2 \nu^{11} - 2 \nu^{9} - 8 \nu^{8} + 12 \nu^{7} + \cdots + 128 ) / 64 Copy content Toggle raw display
β7\beta_{7}== (ν17+2ν16ν15+4ν144ν13+2ν12+2ν118ν10+256)/128 ( - \nu^{17} + 2 \nu^{16} - \nu^{15} + 4 \nu^{14} - 4 \nu^{13} + 2 \nu^{12} + 2 \nu^{11} - 8 \nu^{10} + \cdots - 256 ) / 128 Copy content Toggle raw display
β8\beta_{8}== (3ν176ν16+9ν1510ν14+6ν134ν12+6ν11+8ν10++256)/256 ( 3 \nu^{17} - 6 \nu^{16} + 9 \nu^{15} - 10 \nu^{14} + 6 \nu^{13} - 4 \nu^{12} + 6 \nu^{11} + 8 \nu^{10} + \cdots + 256 ) / 256 Copy content Toggle raw display
β9\beta_{9}== (3ν176ν16+5ν156ν14+2ν1310ν11+8ν10+4ν9++768)/256 ( 3 \nu^{17} - 6 \nu^{16} + 5 \nu^{15} - 6 \nu^{14} + 2 \nu^{13} - 10 \nu^{11} + 8 \nu^{10} + 4 \nu^{9} + \cdots + 768 ) / 256 Copy content Toggle raw display
β10\beta_{10}== (3ν178ν16+5ν1512ν14+2ν13+12ν1210ν11++1536)/256 ( 3 \nu^{17} - 8 \nu^{16} + 5 \nu^{15} - 12 \nu^{14} + 2 \nu^{13} + 12 \nu^{12} - 10 \nu^{11} + \cdots + 1536 ) / 256 Copy content Toggle raw display
β11\beta_{11}== (2ν17+ν162ν15+ν14+4ν138ν12+8ν11+2ν10+384)/128 ( - 2 \nu^{17} + \nu^{16} - 2 \nu^{15} + \nu^{14} + 4 \nu^{13} - 8 \nu^{12} + 8 \nu^{11} + 2 \nu^{10} + \cdots - 384 ) / 128 Copy content Toggle raw display
β12\beta_{12}== (3ν17+5ν165ν15+7ν142ν136ν12+10ν11+768)/128 ( - 3 \nu^{17} + 5 \nu^{16} - 5 \nu^{15} + 7 \nu^{14} - 2 \nu^{13} - 6 \nu^{12} + 10 \nu^{11} + \cdots - 768 ) / 128 Copy content Toggle raw display
β13\beta_{13}== (2ν173ν162ν15+3ν1412ν13+14ν1220ν11++1280)/128 ( 2 \nu^{17} - 3 \nu^{16} - 2 \nu^{15} + 3 \nu^{14} - 12 \nu^{13} + 14 \nu^{12} - 20 \nu^{11} + \cdots + 1280 ) / 128 Copy content Toggle raw display
β14\beta_{14}== (3ν172ν16+7ν1518ν14+26ν1332ν12+26ν11+1280)/256 ( - 3 \nu^{17} - 2 \nu^{16} + 7 \nu^{15} - 18 \nu^{14} + 26 \nu^{13} - 32 \nu^{12} + 26 \nu^{11} + \cdots - 1280 ) / 256 Copy content Toggle raw display
β15\beta_{15}== (5ν174ν16ν15+8ν1422ν13+28ν1222ν11++1792)/256 ( 5 \nu^{17} - 4 \nu^{16} - \nu^{15} + 8 \nu^{14} - 22 \nu^{13} + 28 \nu^{12} - 22 \nu^{11} + \cdots + 1792 ) / 256 Copy content Toggle raw display
β16\beta_{16}== (9ν1710ν16+3ν152ν1422ν13+40ν1246ν11++3328)/256 ( 9 \nu^{17} - 10 \nu^{16} + 3 \nu^{15} - 2 \nu^{14} - 22 \nu^{13} + 40 \nu^{12} - 46 \nu^{11} + \cdots + 3328 ) / 256 Copy content Toggle raw display
β17\beta_{17}== (11ν17+14ν165ν152ν14+30ν1348ν12+50ν11+3840)/256 ( - 11 \nu^{17} + 14 \nu^{16} - 5 \nu^{15} - 2 \nu^{14} + 30 \nu^{13} - 48 \nu^{12} + 50 \nu^{11} + \cdots - 3840 ) / 256 Copy content Toggle raw display
ν\nu== (β1)/2 ( \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β17+β15β11β7β3β2)/2 ( \beta_{17} + \beta_{15} - \beta_{11} - \beta_{7} - \beta_{3} - \beta_{2} ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (β17+β13β11+β8+β6+β3β2)/2 ( \beta_{17} + \beta_{13} - \beta_{11} + \beta_{8} + \beta_{6} + \beta_{3} - \beta_{2} ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (β17+2β16β15+2β14+β112β102β9+β2)/2 ( - \beta_{17} + 2 \beta_{16} - \beta_{15} + 2 \beta_{14} + \beta_{11} - 2 \beta_{10} - 2 \beta_{9} + \cdots - \beta_{2} ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (β17+2β14+β13+2β12β11β8β6++2β1)/2 ( - \beta_{17} + 2 \beta_{14} + \beta_{13} + 2 \beta_{12} - \beta_{11} - \beta_{8} - \beta_{6} + \cdots + 2 \beta_1 ) / 2 Copy content Toggle raw display
ν6\nu^{6}== (β17+2β163β152β13+2β12β11+2β9+2β1)/2 ( - \beta_{17} + 2 \beta_{16} - 3 \beta_{15} - 2 \beta_{13} + 2 \beta_{12} - \beta_{11} + 2 \beta_{9} + \cdots - 2 \beta_1 ) / 2 Copy content Toggle raw display
ν7\nu^{7}== (β17+4β15+2β14β132β12+β113β8+β2)/2 ( \beta_{17} + 4 \beta_{15} + 2 \beta_{14} - \beta_{13} - 2 \beta_{12} + \beta_{11} - 3 \beta_{8} + \cdots - \beta_{2} ) / 2 Copy content Toggle raw display
ν8\nu^{8}== (3β172β16+5β15+2β132β12β11+6β9+2β1)/2 ( 3 \beta_{17} - 2 \beta_{16} + 5 \beta_{15} + 2 \beta_{13} - 2 \beta_{12} - \beta_{11} + 6 \beta_{9} + \cdots - 2 \beta_1 ) / 2 Copy content Toggle raw display
ν9\nu^{9}== (β17+8β168β152β14β13+2β12+5β11+9β2)/2 ( \beta_{17} + 8 \beta_{16} - 8 \beta_{15} - 2 \beta_{14} - \beta_{13} + 2 \beta_{12} + 5 \beta_{11} + \cdots - 9 \beta_{2} ) / 2 Copy content Toggle raw display
ν10\nu^{10}== (5β17+14β163β15+4β146β13+10β12+11β11+16)/2 ( - 5 \beta_{17} + 14 \beta_{16} - 3 \beta_{15} + 4 \beta_{14} - 6 \beta_{13} + 10 \beta_{12} + 11 \beta_{11} + \cdots - 16 ) / 2 Copy content Toggle raw display
ν11\nu^{11}== (3β17+12β15+6β149β13+10β12+β11+8β10++32)/2 ( - 3 \beta_{17} + 12 \beta_{15} + 6 \beta_{14} - 9 \beta_{13} + 10 \beta_{12} + \beta_{11} + 8 \beta_{10} + \cdots + 32 ) / 2 Copy content Toggle raw display
ν12\nu^{12}== (5β172β167β1512β1410β136β125β11+48)/2 ( - 5 \beta_{17} - 2 \beta_{16} - 7 \beta_{15} - 12 \beta_{14} - 10 \beta_{13} - 6 \beta_{12} - 5 \beta_{11} + \cdots - 48 ) / 2 Copy content Toggle raw display
ν13\nu^{13}== (5β17+24β168β1510β1429β1314β12+β11++32)/2 ( 5 \beta_{17} + 24 \beta_{16} - 8 \beta_{15} - 10 \beta_{14} - 29 \beta_{13} - 14 \beta_{12} + \beta_{11} + \cdots + 32 ) / 2 Copy content Toggle raw display
ν14\nu^{14}== (5β17+6β163β1512β146β13+2β12+19β11++48)/2 ( - 5 \beta_{17} + 6 \beta_{16} - 3 \beta_{15} - 12 \beta_{14} - 6 \beta_{13} + 2 \beta_{12} + 19 \beta_{11} + \cdots + 48 ) / 2 Copy content Toggle raw display
ν15\nu^{15}== (19β17+32β16+20β15+14β1457β1314β12++96)/2 ( - 19 \beta_{17} + 32 \beta_{16} + 20 \beta_{15} + 14 \beta_{14} - 57 \beta_{13} - 14 \beta_{12} + \cdots + 96 ) / 2 Copy content Toggle raw display
ν16\nu^{16}== (59β1734β16+41β1552β14+6β13+2β1277β11++240)/2 ( 59 \beta_{17} - 34 \beta_{16} + 41 \beta_{15} - 52 \beta_{14} + 6 \beta_{13} + 2 \beta_{12} - 77 \beta_{11} + \cdots + 240 ) / 2 Copy content Toggle raw display
ν17\nu^{17}== (29β17+136β1680β1542β1493β1314β12++32)/2 ( 29 \beta_{17} + 136 \beta_{16} - 80 \beta_{15} - 42 \beta_{14} - 93 \beta_{13} - 14 \beta_{12} + \cdots + 32 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1224Z)×\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times.

nn 137137 613613 649649 919919
χ(n)\chi(n) 11 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1189.1
−1.36011 + 0.387425i
−1.36011 0.387425i
−1.35042 + 0.419960i
−1.35042 0.419960i
−0.943929 + 1.05309i
−0.943929 1.05309i
−0.410541 + 1.35331i
−0.410541 1.35331i
−0.0535843 + 1.41320i
−0.0535843 1.41320i
0.480188 + 1.33020i
0.480188 1.33020i
0.937200 + 1.05908i
0.937200 1.05908i
1.29188 + 0.575356i
1.29188 0.575356i
1.40931 + 0.117654i
1.40931 0.117654i
−1.36011 0.387425i 0 1.69980 + 1.05388i −0.665591 0 0.998700i −1.90362 2.09194i 0 0.905277 + 0.257866i
1189.2 −1.36011 + 0.387425i 0 1.69980 1.05388i −0.665591 0 0.998700i −1.90362 + 2.09194i 0 0.905277 0.257866i
1189.3 −1.35042 0.419960i 0 1.64727 + 1.13424i 3.71339 0 5.19876i −1.74817 2.22349i 0 −5.01464 1.55948i
1189.4 −1.35042 + 0.419960i 0 1.64727 1.13424i 3.71339 0 5.19876i −1.74817 + 2.22349i 0 −5.01464 + 1.55948i
1189.5 −0.943929 1.05309i 0 −0.217998 + 1.98808i −1.57273 0 1.68207i 2.29941 1.64704i 0 1.48454 + 1.65622i
1189.6 −0.943929 + 1.05309i 0 −0.217998 1.98808i −1.57273 0 1.68207i 2.29941 + 1.64704i 0 1.48454 1.65622i
1189.7 −0.410541 1.35331i 0 −1.66291 + 1.11118i −1.09133 0 4.50716i 2.18647 + 1.79426i 0 0.448036 + 1.47691i
1189.8 −0.410541 + 1.35331i 0 −1.66291 1.11118i −1.09133 0 4.50716i 2.18647 1.79426i 0 0.448036 1.47691i
1189.9 −0.0535843 1.41320i 0 −1.99426 + 0.151450i 3.17378 0 2.51539i 0.320890 + 2.81017i 0 −0.170065 4.48518i
1189.10 −0.0535843 + 1.41320i 0 −1.99426 0.151450i 3.17378 0 2.51539i 0.320890 2.81017i 0 −0.170065 + 4.48518i
1189.11 0.480188 1.33020i 0 −1.53884 1.27749i 1.12134 0 0.430012i −2.43824 + 1.43352i 0 0.538452 1.49159i
1189.12 0.480188 + 1.33020i 0 −1.53884 + 1.27749i 1.12134 0 0.430012i −2.43824 1.43352i 0 0.538452 + 1.49159i
1189.13 0.937200 1.05908i 0 −0.243310 1.98514i −4.06326 0 1.33474i −2.33046 1.60279i 0 −3.80809 + 4.30332i
1189.14 0.937200 + 1.05908i 0 −0.243310 + 1.98514i −4.06326 0 1.33474i −2.33046 + 1.60279i 0 −3.80809 4.30332i
1189.15 1.29188 0.575356i 0 1.33793 1.48659i 2.84912 0 1.38176i 0.873137 2.69028i 0 3.68073 1.63925i
1189.16 1.29188 + 0.575356i 0 1.33793 + 1.48659i 2.84912 0 1.38176i 0.873137 + 2.69028i 0 3.68073 + 1.63925i
1189.17 1.40931 0.117654i 0 1.97232 0.331622i −1.46472 0 3.26018i 2.74059 0.699408i 0 −2.06424 + 0.172330i
1189.18 1.40931 + 0.117654i 0 1.97232 + 0.331622i −1.46472 0 3.26018i 2.74059 + 0.699408i 0 −2.06424 0.172330i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1189.18
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
136.h even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1224.2.l.d 18
3.b odd 2 1 408.2.l.b yes 18
4.b odd 2 1 4896.2.l.d 18
8.b even 2 1 1224.2.l.c 18
8.d odd 2 1 4896.2.l.c 18
12.b even 2 1 1632.2.l.a 18
17.b even 2 1 1224.2.l.c 18
24.f even 2 1 1632.2.l.b 18
24.h odd 2 1 408.2.l.a 18
51.c odd 2 1 408.2.l.a 18
68.d odd 2 1 4896.2.l.c 18
136.e odd 2 1 4896.2.l.d 18
136.h even 2 1 inner 1224.2.l.d 18
204.h even 2 1 1632.2.l.b 18
408.b odd 2 1 408.2.l.b yes 18
408.h even 2 1 1632.2.l.a 18
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
408.2.l.a 18 24.h odd 2 1
408.2.l.a 18 51.c odd 2 1
408.2.l.b yes 18 3.b odd 2 1
408.2.l.b yes 18 408.b odd 2 1
1224.2.l.c 18 8.b even 2 1
1224.2.l.c 18 17.b even 2 1
1224.2.l.d 18 1.a even 1 1 trivial
1224.2.l.d 18 136.h even 2 1 inner
1632.2.l.a 18 12.b even 2 1
1632.2.l.a 18 408.h even 2 1
1632.2.l.b 18 24.f even 2 1
1632.2.l.b 18 204.h even 2 1
4896.2.l.c 18 8.d odd 2 1
4896.2.l.c 18 68.d odd 2 1
4896.2.l.d 18 4.b odd 2 1
4896.2.l.d 18 136.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T592T5826T57+44T56+197T55166T54648T5360T52+552T5+256 T_{5}^{9} - 2T_{5}^{8} - 26T_{5}^{7} + 44T_{5}^{6} + 197T_{5}^{5} - 166T_{5}^{4} - 648T_{5}^{3} - 60T_{5}^{2} + 552T_{5} + 256 acting on S2new(1224,[χ])S_{2}^{\mathrm{new}}(1224, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T18T16++512 T^{18} - T^{16} + \cdots + 512 Copy content Toggle raw display
33 T18 T^{18} Copy content Toggle raw display
55 (T92T8++256)2 (T^{9} - 2 T^{8} + \cdots + 256)^{2} Copy content Toggle raw display
77 T18+72T16++65536 T^{18} + 72 T^{16} + \cdots + 65536 Copy content Toggle raw display
1111 (T954T7+512)2 (T^{9} - 54 T^{7} + \cdots - 512)^{2} Copy content Toggle raw display
1313 T18+124T16++1048576 T^{18} + 124 T^{16} + \cdots + 1048576 Copy content Toggle raw display
1717 T18++118587876497 T^{18} + \cdots + 118587876497 Copy content Toggle raw display
1919 T18++5110534144 T^{18} + \cdots + 5110534144 Copy content Toggle raw display
2323 T18++57431163904 T^{18} + \cdots + 57431163904 Copy content Toggle raw display
2929 (T9+6T8+8192)2 (T^{9} + 6 T^{8} + \cdots - 8192)^{2} Copy content Toggle raw display
3131 T18+192T16++75759616 T^{18} + 192 T^{16} + \cdots + 75759616 Copy content Toggle raw display
3737 (T9+8T8++182272)2 (T^{9} + 8 T^{8} + \cdots + 182272)^{2} Copy content Toggle raw display
4141 T18++1474922807296 T^{18} + \cdots + 1474922807296 Copy content Toggle raw display
4343 T18++22641152425984 T^{18} + \cdots + 22641152425984 Copy content Toggle raw display
4747 (T9220T7+8781824)2 (T^{9} - 220 T^{7} + \cdots - 8781824)^{2} Copy content Toggle raw display
5353 T18++3561644621824 T^{18} + \cdots + 3561644621824 Copy content Toggle raw display
5959 T18++10417711611904 T^{18} + \cdots + 10417711611904 Copy content Toggle raw display
6161 (T9+8T8+22528)2 (T^{9} + 8 T^{8} + \cdots - 22528)^{2} Copy content Toggle raw display
6767 T18++8875147264 T^{18} + \cdots + 8875147264 Copy content Toggle raw display
7171 T18++34530008498176 T^{18} + \cdots + 34530008498176 Copy content Toggle raw display
7373 T18++3427652337664 T^{18} + \cdots + 3427652337664 Copy content Toggle raw display
7979 T18++223514460160000 T^{18} + \cdots + 223514460160000 Copy content Toggle raw display
8383 T18++945638269517824 T^{18} + \cdots + 945638269517824 Copy content Toggle raw display
8989 (T9+10T8++192794368)2 (T^{9} + 10 T^{8} + \cdots + 192794368)^{2} Copy content Toggle raw display
9797 T18++9088150798336 T^{18} + \cdots + 9088150798336 Copy content Toggle raw display
show more
show less