Properties

Label 1224.2.l.d
Level $1224$
Weight $2$
Character orbit 1224.l
Analytic conductor $9.774$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(1189,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.1189");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.l (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.77368920740\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{16} - 2x^{14} + 2x^{12} - 4x^{11} + 4x^{10} + 8x^{8} - 16x^{7} + 16x^{6} - 64x^{4} - 128x^{2} + 512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 408)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{17}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{5} q^{2} - \beta_{2} q^{4} - \beta_{9} q^{5} + \beta_{15} q^{7} + \beta_{4} q^{8} + \beta_{8} q^{10} - \beta_{12} q^{11} - \beta_{13} q^{13} + (\beta_{16} - \beta_{15} + \cdots - \beta_{10}) q^{14}+ \cdots + (2 \beta_{15} + 2 \beta_{11} + \cdots + 2) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{4} + 4 q^{5} - 8 q^{10} + 6 q^{14} + 10 q^{16} + 2 q^{17} + 2 q^{20} + 2 q^{22} + 22 q^{25} - 2 q^{26} - 10 q^{28} - 12 q^{29} + 6 q^{34} - 16 q^{37} + 34 q^{38} - 10 q^{40} - 12 q^{44} + 32 q^{46}+ \cdots + 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{18} - x^{16} - 2x^{14} + 2x^{12} - 4x^{11} + 4x^{10} + 8x^{8} - 16x^{7} + 16x^{6} - 64x^{4} - 128x^{2} + 512 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{16} - \nu^{14} - 2 \nu^{12} + 2 \nu^{10} - 4 \nu^{9} + 4 \nu^{8} + 8 \nu^{6} - 16 \nu^{5} + \cdots - 128 ) / 128 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{16} - \nu^{14} + 4 \nu^{13} - 2 \nu^{12} + 4 \nu^{11} + 2 \nu^{10} - 4 \nu^{9} + 4 \nu^{8} + \cdots - 256 ) / 128 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - \nu^{17} - 3 \nu^{15} + 6 \nu^{13} + 6 \nu^{11} + 4 \nu^{10} - 12 \nu^{9} + 16 \nu^{8} + \cdots + 384 \nu ) / 256 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - \nu^{17} + \nu^{15} + 2 \nu^{13} - 2 \nu^{11} + 4 \nu^{10} - 4 \nu^{9} - 8 \nu^{7} + 16 \nu^{6} + \cdots + 128 \nu ) / 256 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - \nu^{15} + 2 \nu^{14} - 3 \nu^{13} + 2 \nu^{12} - 2 \nu^{11} - 2 \nu^{9} - 8 \nu^{8} + 12 \nu^{7} + \cdots + 128 ) / 64 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - \nu^{17} + 2 \nu^{16} - \nu^{15} + 4 \nu^{14} - 4 \nu^{13} + 2 \nu^{12} + 2 \nu^{11} - 8 \nu^{10} + \cdots - 256 ) / 128 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 3 \nu^{17} - 6 \nu^{16} + 9 \nu^{15} - 10 \nu^{14} + 6 \nu^{13} - 4 \nu^{12} + 6 \nu^{11} + 8 \nu^{10} + \cdots + 256 ) / 256 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 3 \nu^{17} - 6 \nu^{16} + 5 \nu^{15} - 6 \nu^{14} + 2 \nu^{13} - 10 \nu^{11} + 8 \nu^{10} + 4 \nu^{9} + \cdots + 768 ) / 256 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 3 \nu^{17} - 8 \nu^{16} + 5 \nu^{15} - 12 \nu^{14} + 2 \nu^{13} + 12 \nu^{12} - 10 \nu^{11} + \cdots + 1536 ) / 256 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 2 \nu^{17} + \nu^{16} - 2 \nu^{15} + \nu^{14} + 4 \nu^{13} - 8 \nu^{12} + 8 \nu^{11} + 2 \nu^{10} + \cdots - 384 ) / 128 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 3 \nu^{17} + 5 \nu^{16} - 5 \nu^{15} + 7 \nu^{14} - 2 \nu^{13} - 6 \nu^{12} + 10 \nu^{11} + \cdots - 768 ) / 128 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 2 \nu^{17} - 3 \nu^{16} - 2 \nu^{15} + 3 \nu^{14} - 12 \nu^{13} + 14 \nu^{12} - 20 \nu^{11} + \cdots + 1280 ) / 128 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 3 \nu^{17} - 2 \nu^{16} + 7 \nu^{15} - 18 \nu^{14} + 26 \nu^{13} - 32 \nu^{12} + 26 \nu^{11} + \cdots - 1280 ) / 256 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 5 \nu^{17} - 4 \nu^{16} - \nu^{15} + 8 \nu^{14} - 22 \nu^{13} + 28 \nu^{12} - 22 \nu^{11} + \cdots + 1792 ) / 256 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 9 \nu^{17} - 10 \nu^{16} + 3 \nu^{15} - 2 \nu^{14} - 22 \nu^{13} + 40 \nu^{12} - 46 \nu^{11} + \cdots + 3328 ) / 256 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 11 \nu^{17} + 14 \nu^{16} - 5 \nu^{15} - 2 \nu^{14} + 30 \nu^{13} - 48 \nu^{12} + 50 \nu^{11} + \cdots - 3840 ) / 256 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{17} + \beta_{15} - \beta_{11} - \beta_{7} - \beta_{3} - \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{17} + \beta_{13} - \beta_{11} + \beta_{8} + \beta_{6} + \beta_{3} - \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - \beta_{17} + 2 \beta_{16} - \beta_{15} + 2 \beta_{14} + \beta_{11} - 2 \beta_{10} - 2 \beta_{9} + \cdots - \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - \beta_{17} + 2 \beta_{14} + \beta_{13} + 2 \beta_{12} - \beta_{11} - \beta_{8} - \beta_{6} + \cdots + 2 \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - \beta_{17} + 2 \beta_{16} - 3 \beta_{15} - 2 \beta_{13} + 2 \beta_{12} - \beta_{11} + 2 \beta_{9} + \cdots - 2 \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( \beta_{17} + 4 \beta_{15} + 2 \beta_{14} - \beta_{13} - 2 \beta_{12} + \beta_{11} - 3 \beta_{8} + \cdots - \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 3 \beta_{17} - 2 \beta_{16} + 5 \beta_{15} + 2 \beta_{13} - 2 \beta_{12} - \beta_{11} + 6 \beta_{9} + \cdots - 2 \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( \beta_{17} + 8 \beta_{16} - 8 \beta_{15} - 2 \beta_{14} - \beta_{13} + 2 \beta_{12} + 5 \beta_{11} + \cdots - 9 \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 5 \beta_{17} + 14 \beta_{16} - 3 \beta_{15} + 4 \beta_{14} - 6 \beta_{13} + 10 \beta_{12} + 11 \beta_{11} + \cdots - 16 ) / 2 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 3 \beta_{17} + 12 \beta_{15} + 6 \beta_{14} - 9 \beta_{13} + 10 \beta_{12} + \beta_{11} + 8 \beta_{10} + \cdots + 32 ) / 2 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 5 \beta_{17} - 2 \beta_{16} - 7 \beta_{15} - 12 \beta_{14} - 10 \beta_{13} - 6 \beta_{12} - 5 \beta_{11} + \cdots - 48 ) / 2 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 5 \beta_{17} + 24 \beta_{16} - 8 \beta_{15} - 10 \beta_{14} - 29 \beta_{13} - 14 \beta_{12} + \beta_{11} + \cdots + 32 ) / 2 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 5 \beta_{17} + 6 \beta_{16} - 3 \beta_{15} - 12 \beta_{14} - 6 \beta_{13} + 2 \beta_{12} + 19 \beta_{11} + \cdots + 48 ) / 2 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 19 \beta_{17} + 32 \beta_{16} + 20 \beta_{15} + 14 \beta_{14} - 57 \beta_{13} - 14 \beta_{12} + \cdots + 96 ) / 2 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( ( 59 \beta_{17} - 34 \beta_{16} + 41 \beta_{15} - 52 \beta_{14} + 6 \beta_{13} + 2 \beta_{12} - 77 \beta_{11} + \cdots + 240 ) / 2 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( ( 29 \beta_{17} + 136 \beta_{16} - 80 \beta_{15} - 42 \beta_{14} - 93 \beta_{13} - 14 \beta_{12} + \cdots + 32 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(613\) \(649\) \(919\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1189.1
−1.36011 + 0.387425i
−1.36011 0.387425i
−1.35042 + 0.419960i
−1.35042 0.419960i
−0.943929 + 1.05309i
−0.943929 1.05309i
−0.410541 + 1.35331i
−0.410541 1.35331i
−0.0535843 + 1.41320i
−0.0535843 1.41320i
0.480188 + 1.33020i
0.480188 1.33020i
0.937200 + 1.05908i
0.937200 1.05908i
1.29188 + 0.575356i
1.29188 0.575356i
1.40931 + 0.117654i
1.40931 0.117654i
−1.36011 0.387425i 0 1.69980 + 1.05388i −0.665591 0 0.998700i −1.90362 2.09194i 0 0.905277 + 0.257866i
1189.2 −1.36011 + 0.387425i 0 1.69980 1.05388i −0.665591 0 0.998700i −1.90362 + 2.09194i 0 0.905277 0.257866i
1189.3 −1.35042 0.419960i 0 1.64727 + 1.13424i 3.71339 0 5.19876i −1.74817 2.22349i 0 −5.01464 1.55948i
1189.4 −1.35042 + 0.419960i 0 1.64727 1.13424i 3.71339 0 5.19876i −1.74817 + 2.22349i 0 −5.01464 + 1.55948i
1189.5 −0.943929 1.05309i 0 −0.217998 + 1.98808i −1.57273 0 1.68207i 2.29941 1.64704i 0 1.48454 + 1.65622i
1189.6 −0.943929 + 1.05309i 0 −0.217998 1.98808i −1.57273 0 1.68207i 2.29941 + 1.64704i 0 1.48454 1.65622i
1189.7 −0.410541 1.35331i 0 −1.66291 + 1.11118i −1.09133 0 4.50716i 2.18647 + 1.79426i 0 0.448036 + 1.47691i
1189.8 −0.410541 + 1.35331i 0 −1.66291 1.11118i −1.09133 0 4.50716i 2.18647 1.79426i 0 0.448036 1.47691i
1189.9 −0.0535843 1.41320i 0 −1.99426 + 0.151450i 3.17378 0 2.51539i 0.320890 + 2.81017i 0 −0.170065 4.48518i
1189.10 −0.0535843 + 1.41320i 0 −1.99426 0.151450i 3.17378 0 2.51539i 0.320890 2.81017i 0 −0.170065 + 4.48518i
1189.11 0.480188 1.33020i 0 −1.53884 1.27749i 1.12134 0 0.430012i −2.43824 + 1.43352i 0 0.538452 1.49159i
1189.12 0.480188 + 1.33020i 0 −1.53884 + 1.27749i 1.12134 0 0.430012i −2.43824 1.43352i 0 0.538452 + 1.49159i
1189.13 0.937200 1.05908i 0 −0.243310 1.98514i −4.06326 0 1.33474i −2.33046 1.60279i 0 −3.80809 + 4.30332i
1189.14 0.937200 + 1.05908i 0 −0.243310 + 1.98514i −4.06326 0 1.33474i −2.33046 + 1.60279i 0 −3.80809 4.30332i
1189.15 1.29188 0.575356i 0 1.33793 1.48659i 2.84912 0 1.38176i 0.873137 2.69028i 0 3.68073 1.63925i
1189.16 1.29188 + 0.575356i 0 1.33793 + 1.48659i 2.84912 0 1.38176i 0.873137 + 2.69028i 0 3.68073 + 1.63925i
1189.17 1.40931 0.117654i 0 1.97232 0.331622i −1.46472 0 3.26018i 2.74059 0.699408i 0 −2.06424 + 0.172330i
1189.18 1.40931 + 0.117654i 0 1.97232 + 0.331622i −1.46472 0 3.26018i 2.74059 + 0.699408i 0 −2.06424 0.172330i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1189.18
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
136.h even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1224.2.l.d 18
3.b odd 2 1 408.2.l.b yes 18
4.b odd 2 1 4896.2.l.d 18
8.b even 2 1 1224.2.l.c 18
8.d odd 2 1 4896.2.l.c 18
12.b even 2 1 1632.2.l.a 18
17.b even 2 1 1224.2.l.c 18
24.f even 2 1 1632.2.l.b 18
24.h odd 2 1 408.2.l.a 18
51.c odd 2 1 408.2.l.a 18
68.d odd 2 1 4896.2.l.c 18
136.e odd 2 1 4896.2.l.d 18
136.h even 2 1 inner 1224.2.l.d 18
204.h even 2 1 1632.2.l.b 18
408.b odd 2 1 408.2.l.b yes 18
408.h even 2 1 1632.2.l.a 18
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
408.2.l.a 18 24.h odd 2 1
408.2.l.a 18 51.c odd 2 1
408.2.l.b yes 18 3.b odd 2 1
408.2.l.b yes 18 408.b odd 2 1
1224.2.l.c 18 8.b even 2 1
1224.2.l.c 18 17.b even 2 1
1224.2.l.d 18 1.a even 1 1 trivial
1224.2.l.d 18 136.h even 2 1 inner
1632.2.l.a 18 12.b even 2 1
1632.2.l.a 18 408.h even 2 1
1632.2.l.b 18 24.f even 2 1
1632.2.l.b 18 204.h even 2 1
4896.2.l.c 18 8.d odd 2 1
4896.2.l.c 18 68.d odd 2 1
4896.2.l.d 18 4.b odd 2 1
4896.2.l.d 18 136.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{9} - 2T_{5}^{8} - 26T_{5}^{7} + 44T_{5}^{6} + 197T_{5}^{5} - 166T_{5}^{4} - 648T_{5}^{3} - 60T_{5}^{2} + 552T_{5} + 256 \) acting on \(S_{2}^{\mathrm{new}}(1224, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{18} - T^{16} + \cdots + 512 \) Copy content Toggle raw display
$3$ \( T^{18} \) Copy content Toggle raw display
$5$ \( (T^{9} - 2 T^{8} + \cdots + 256)^{2} \) Copy content Toggle raw display
$7$ \( T^{18} + 72 T^{16} + \cdots + 65536 \) Copy content Toggle raw display
$11$ \( (T^{9} - 54 T^{7} + \cdots - 512)^{2} \) Copy content Toggle raw display
$13$ \( T^{18} + 124 T^{16} + \cdots + 1048576 \) Copy content Toggle raw display
$17$ \( T^{18} + \cdots + 118587876497 \) Copy content Toggle raw display
$19$ \( T^{18} + \cdots + 5110534144 \) Copy content Toggle raw display
$23$ \( T^{18} + \cdots + 57431163904 \) Copy content Toggle raw display
$29$ \( (T^{9} + 6 T^{8} + \cdots - 8192)^{2} \) Copy content Toggle raw display
$31$ \( T^{18} + 192 T^{16} + \cdots + 75759616 \) Copy content Toggle raw display
$37$ \( (T^{9} + 8 T^{8} + \cdots + 182272)^{2} \) Copy content Toggle raw display
$41$ \( T^{18} + \cdots + 1474922807296 \) Copy content Toggle raw display
$43$ \( T^{18} + \cdots + 22641152425984 \) Copy content Toggle raw display
$47$ \( (T^{9} - 220 T^{7} + \cdots - 8781824)^{2} \) Copy content Toggle raw display
$53$ \( T^{18} + \cdots + 3561644621824 \) Copy content Toggle raw display
$59$ \( T^{18} + \cdots + 10417711611904 \) Copy content Toggle raw display
$61$ \( (T^{9} + 8 T^{8} + \cdots - 22528)^{2} \) Copy content Toggle raw display
$67$ \( T^{18} + \cdots + 8875147264 \) Copy content Toggle raw display
$71$ \( T^{18} + \cdots + 34530008498176 \) Copy content Toggle raw display
$73$ \( T^{18} + \cdots + 3427652337664 \) Copy content Toggle raw display
$79$ \( T^{18} + \cdots + 223514460160000 \) Copy content Toggle raw display
$83$ \( T^{18} + \cdots + 945638269517824 \) Copy content Toggle raw display
$89$ \( (T^{9} + 10 T^{8} + \cdots + 192794368)^{2} \) Copy content Toggle raw display
$97$ \( T^{18} + \cdots + 9088150798336 \) Copy content Toggle raw display
show more
show less