Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1224,2,Mod(1189,1224)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1224, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1224.1189");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1224.l (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 408) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1189.1 |
|
−1.36011 | − | 0.387425i | 0 | 1.69980 | + | 1.05388i | −0.665591 | 0 | − | 0.998700i | −1.90362 | − | 2.09194i | 0 | 0.905277 | + | 0.257866i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1189.2 | −1.36011 | + | 0.387425i | 0 | 1.69980 | − | 1.05388i | −0.665591 | 0 | 0.998700i | −1.90362 | + | 2.09194i | 0 | 0.905277 | − | 0.257866i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1189.3 | −1.35042 | − | 0.419960i | 0 | 1.64727 | + | 1.13424i | 3.71339 | 0 | 5.19876i | −1.74817 | − | 2.22349i | 0 | −5.01464 | − | 1.55948i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1189.4 | −1.35042 | + | 0.419960i | 0 | 1.64727 | − | 1.13424i | 3.71339 | 0 | − | 5.19876i | −1.74817 | + | 2.22349i | 0 | −5.01464 | + | 1.55948i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1189.5 | −0.943929 | − | 1.05309i | 0 | −0.217998 | + | 1.98808i | −1.57273 | 0 | − | 1.68207i | 2.29941 | − | 1.64704i | 0 | 1.48454 | + | 1.65622i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1189.6 | −0.943929 | + | 1.05309i | 0 | −0.217998 | − | 1.98808i | −1.57273 | 0 | 1.68207i | 2.29941 | + | 1.64704i | 0 | 1.48454 | − | 1.65622i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1189.7 | −0.410541 | − | 1.35331i | 0 | −1.66291 | + | 1.11118i | −1.09133 | 0 | 4.50716i | 2.18647 | + | 1.79426i | 0 | 0.448036 | + | 1.47691i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1189.8 | −0.410541 | + | 1.35331i | 0 | −1.66291 | − | 1.11118i | −1.09133 | 0 | − | 4.50716i | 2.18647 | − | 1.79426i | 0 | 0.448036 | − | 1.47691i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1189.9 | −0.0535843 | − | 1.41320i | 0 | −1.99426 | + | 0.151450i | 3.17378 | 0 | − | 2.51539i | 0.320890 | + | 2.81017i | 0 | −0.170065 | − | 4.48518i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1189.10 | −0.0535843 | + | 1.41320i | 0 | −1.99426 | − | 0.151450i | 3.17378 | 0 | 2.51539i | 0.320890 | − | 2.81017i | 0 | −0.170065 | + | 4.48518i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1189.11 | 0.480188 | − | 1.33020i | 0 | −1.53884 | − | 1.27749i | 1.12134 | 0 | − | 0.430012i | −2.43824 | + | 1.43352i | 0 | 0.538452 | − | 1.49159i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1189.12 | 0.480188 | + | 1.33020i | 0 | −1.53884 | + | 1.27749i | 1.12134 | 0 | 0.430012i | −2.43824 | − | 1.43352i | 0 | 0.538452 | + | 1.49159i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1189.13 | 0.937200 | − | 1.05908i | 0 | −0.243310 | − | 1.98514i | −4.06326 | 0 | 1.33474i | −2.33046 | − | 1.60279i | 0 | −3.80809 | + | 4.30332i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1189.14 | 0.937200 | + | 1.05908i | 0 | −0.243310 | + | 1.98514i | −4.06326 | 0 | − | 1.33474i | −2.33046 | + | 1.60279i | 0 | −3.80809 | − | 4.30332i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1189.15 | 1.29188 | − | 0.575356i | 0 | 1.33793 | − | 1.48659i | 2.84912 | 0 | − | 1.38176i | 0.873137 | − | 2.69028i | 0 | 3.68073 | − | 1.63925i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1189.16 | 1.29188 | + | 0.575356i | 0 | 1.33793 | + | 1.48659i | 2.84912 | 0 | 1.38176i | 0.873137 | + | 2.69028i | 0 | 3.68073 | + | 1.63925i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1189.17 | 1.40931 | − | 0.117654i | 0 | 1.97232 | − | 0.331622i | −1.46472 | 0 | 3.26018i | 2.74059 | − | 0.699408i | 0 | −2.06424 | + | 0.172330i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1189.18 | 1.40931 | + | 0.117654i | 0 | 1.97232 | + | 0.331622i | −1.46472 | 0 | − | 3.26018i | 2.74059 | + | 0.699408i | 0 | −2.06424 | − | 0.172330i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
136.h | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1224.2.l.d | 18 | |
3.b | odd | 2 | 1 | 408.2.l.b | yes | 18 | |
4.b | odd | 2 | 1 | 4896.2.l.d | 18 | ||
8.b | even | 2 | 1 | 1224.2.l.c | 18 | ||
8.d | odd | 2 | 1 | 4896.2.l.c | 18 | ||
12.b | even | 2 | 1 | 1632.2.l.a | 18 | ||
17.b | even | 2 | 1 | 1224.2.l.c | 18 | ||
24.f | even | 2 | 1 | 1632.2.l.b | 18 | ||
24.h | odd | 2 | 1 | 408.2.l.a | ✓ | 18 | |
51.c | odd | 2 | 1 | 408.2.l.a | ✓ | 18 | |
68.d | odd | 2 | 1 | 4896.2.l.c | 18 | ||
136.e | odd | 2 | 1 | 4896.2.l.d | 18 | ||
136.h | even | 2 | 1 | inner | 1224.2.l.d | 18 | |
204.h | even | 2 | 1 | 1632.2.l.b | 18 | ||
408.b | odd | 2 | 1 | 408.2.l.b | yes | 18 | |
408.h | even | 2 | 1 | 1632.2.l.a | 18 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
408.2.l.a | ✓ | 18 | 24.h | odd | 2 | 1 | |
408.2.l.a | ✓ | 18 | 51.c | odd | 2 | 1 | |
408.2.l.b | yes | 18 | 3.b | odd | 2 | 1 | |
408.2.l.b | yes | 18 | 408.b | odd | 2 | 1 | |
1224.2.l.c | 18 | 8.b | even | 2 | 1 | ||
1224.2.l.c | 18 | 17.b | even | 2 | 1 | ||
1224.2.l.d | 18 | 1.a | even | 1 | 1 | trivial | |
1224.2.l.d | 18 | 136.h | even | 2 | 1 | inner | |
1632.2.l.a | 18 | 12.b | even | 2 | 1 | ||
1632.2.l.a | 18 | 408.h | even | 2 | 1 | ||
1632.2.l.b | 18 | 24.f | even | 2 | 1 | ||
1632.2.l.b | 18 | 204.h | even | 2 | 1 | ||
4896.2.l.c | 18 | 8.d | odd | 2 | 1 | ||
4896.2.l.c | 18 | 68.d | odd | 2 | 1 | ||
4896.2.l.d | 18 | 4.b | odd | 2 | 1 | ||
4896.2.l.d | 18 | 136.e | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .