Properties

Label 1224.2.l.d.1189.10
Level $1224$
Weight $2$
Character 1224.1189
Analytic conductor $9.774$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(1189,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.1189");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.l (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.77368920740\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{16} - 2x^{14} + 2x^{12} - 4x^{11} + 4x^{10} + 8x^{8} - 16x^{7} + 16x^{6} - 64x^{4} - 128x^{2} + 512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 408)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1189.10
Root \(-0.0535843 - 1.41320i\) of defining polynomial
Character \(\chi\) \(=\) 1224.1189
Dual form 1224.2.l.d.1189.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0535843 + 1.41320i) q^{2} +(-1.99426 - 0.151450i) q^{4} +3.17378 q^{5} +2.51539i q^{7} +(0.320890 - 2.81017i) q^{8} +(-0.170065 + 4.48518i) q^{10} +5.40062 q^{11} +3.61678i q^{13} +(-3.55474 - 0.134785i) q^{14} +(3.95413 + 0.604062i) q^{16} +(4.09928 - 0.442631i) q^{17} -6.87329i q^{19} +(-6.32934 - 0.480670i) q^{20} +(-0.289388 + 7.63215i) q^{22} -7.54740i q^{23} +5.07289 q^{25} +(-5.11123 - 0.193803i) q^{26} +(0.380956 - 5.01633i) q^{28} -3.32236 q^{29} -1.30617i q^{31} +(-1.06554 + 5.55559i) q^{32} +(0.405869 + 5.81681i) q^{34} +7.98329i q^{35} -6.65467 q^{37} +(9.71332 + 0.368300i) q^{38} +(1.01844 - 8.91885i) q^{40} +5.04206i q^{41} +5.85844i q^{43} +(-10.7702 - 0.817926i) q^{44} +(10.6660 + 0.404422i) q^{46} +8.02838 q^{47} +0.672834 q^{49} +(-0.271827 + 7.16900i) q^{50} +(0.547763 - 7.21280i) q^{52} +7.67778i q^{53} +17.1404 q^{55} +(7.06865 + 0.807163i) q^{56} +(0.178026 - 4.69516i) q^{58} -4.23300i q^{59} -3.88181 q^{61} +(1.84588 + 0.0699903i) q^{62} +(-7.79406 - 1.80351i) q^{64} +11.4789i q^{65} +10.8844i q^{67} +(-8.24205 + 0.261884i) q^{68} +(-11.2820 - 0.427779i) q^{70} +4.23091i q^{71} -0.674683i q^{73} +(0.356585 - 9.40436i) q^{74} +(-1.04096 + 13.7071i) q^{76} +13.5846i q^{77} +1.43576i q^{79} +(12.5495 + 1.91716i) q^{80} +(-7.12542 - 0.270175i) q^{82} -16.1494i q^{83} +(13.0102 - 1.40482i) q^{85} +(-8.27913 - 0.313920i) q^{86} +(1.73301 - 15.1766i) q^{88} -9.77068 q^{89} -9.09761 q^{91} +(-1.14306 + 15.0515i) q^{92} +(-0.430195 + 11.3457i) q^{94} -21.8143i q^{95} -0.954796i q^{97} +(-0.0360533 + 0.950847i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{4} + 4 q^{5} - 8 q^{10} + 6 q^{14} + 10 q^{16} + 2 q^{17} + 2 q^{20} + 2 q^{22} + 22 q^{25} - 2 q^{26} - 10 q^{28} - 12 q^{29} + 6 q^{34} - 16 q^{37} + 34 q^{38} - 10 q^{40} - 12 q^{44} + 32 q^{46}+ \cdots + 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(613\) \(649\) \(919\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0535843 + 1.41320i −0.0378898 + 0.999282i
\(3\) 0 0
\(4\) −1.99426 0.151450i −0.997129 0.0757252i
\(5\) 3.17378 1.41936 0.709679 0.704525i \(-0.248840\pi\)
0.709679 + 0.704525i \(0.248840\pi\)
\(6\) 0 0
\(7\) 2.51539i 0.950727i 0.879790 + 0.475363i \(0.157683\pi\)
−0.879790 + 0.475363i \(0.842317\pi\)
\(8\) 0.320890 2.81017i 0.113452 0.993544i
\(9\) 0 0
\(10\) −0.170065 + 4.48518i −0.0537792 + 1.41834i
\(11\) 5.40062 1.62835 0.814174 0.580621i \(-0.197190\pi\)
0.814174 + 0.580621i \(0.197190\pi\)
\(12\) 0 0
\(13\) 3.61678i 1.00312i 0.865124 + 0.501558i \(0.167239\pi\)
−0.865124 + 0.501558i \(0.832761\pi\)
\(14\) −3.55474 0.134785i −0.950044 0.0360228i
\(15\) 0 0
\(16\) 3.95413 + 0.604062i 0.988531 + 0.151016i
\(17\) 4.09928 0.442631i 0.994221 0.107354i
\(18\) 0 0
\(19\) 6.87329i 1.57684i −0.615137 0.788420i \(-0.710899\pi\)
0.615137 0.788420i \(-0.289101\pi\)
\(20\) −6.32934 0.480670i −1.41528 0.107481i
\(21\) 0 0
\(22\) −0.289388 + 7.63215i −0.0616978 + 1.62718i
\(23\) 7.54740i 1.57374i −0.617118 0.786871i \(-0.711700\pi\)
0.617118 0.786871i \(-0.288300\pi\)
\(24\) 0 0
\(25\) 5.07289 1.01458
\(26\) −5.11123 0.193803i −1.00239 0.0380078i
\(27\) 0 0
\(28\) 0.380956 5.01633i 0.0719939 0.947997i
\(29\) −3.32236 −0.616947 −0.308474 0.951233i \(-0.599818\pi\)
−0.308474 + 0.951233i \(0.599818\pi\)
\(30\) 0 0
\(31\) 1.30617i 0.234596i −0.993097 0.117298i \(-0.962577\pi\)
0.993097 0.117298i \(-0.0374232\pi\)
\(32\) −1.06554 + 5.55559i −0.188362 + 0.982100i
\(33\) 0 0
\(34\) 0.405869 + 5.81681i 0.0696059 + 0.997575i
\(35\) 7.98329i 1.34942i
\(36\) 0 0
\(37\) −6.65467 −1.09402 −0.547010 0.837126i \(-0.684234\pi\)
−0.547010 + 0.837126i \(0.684234\pi\)
\(38\) 9.71332 + 0.368300i 1.57571 + 0.0597462i
\(39\) 0 0
\(40\) 1.01844 8.91885i 0.161029 1.41019i
\(41\) 5.04206i 0.787437i 0.919231 + 0.393718i \(0.128811\pi\)
−0.919231 + 0.393718i \(0.871189\pi\)
\(42\) 0 0
\(43\) 5.85844i 0.893403i 0.894683 + 0.446702i \(0.147401\pi\)
−0.894683 + 0.446702i \(0.852599\pi\)
\(44\) −10.7702 0.817926i −1.62367 0.123307i
\(45\) 0 0
\(46\) 10.6660 + 0.404422i 1.57261 + 0.0596287i
\(47\) 8.02838 1.17106 0.585530 0.810651i \(-0.300886\pi\)
0.585530 + 0.810651i \(0.300886\pi\)
\(48\) 0 0
\(49\) 0.672834 0.0961191
\(50\) −0.271827 + 7.16900i −0.0384422 + 1.01385i
\(51\) 0 0
\(52\) 0.547763 7.21280i 0.0759611 1.00024i
\(53\) 7.67778i 1.05462i 0.849672 + 0.527312i \(0.176800\pi\)
−0.849672 + 0.527312i \(0.823200\pi\)
\(54\) 0 0
\(55\) 17.1404 2.31121
\(56\) 7.06865 + 0.807163i 0.944588 + 0.107862i
\(57\) 0 0
\(58\) 0.178026 4.69516i 0.0233760 0.616504i
\(59\) 4.23300i 0.551090i −0.961288 0.275545i \(-0.911142\pi\)
0.961288 0.275545i \(-0.0888582\pi\)
\(60\) 0 0
\(61\) −3.88181 −0.497015 −0.248507 0.968630i \(-0.579940\pi\)
−0.248507 + 0.968630i \(0.579940\pi\)
\(62\) 1.84588 + 0.0699903i 0.234427 + 0.00888878i
\(63\) 0 0
\(64\) −7.79406 1.80351i −0.974257 0.225439i
\(65\) 11.4789i 1.42378i
\(66\) 0 0
\(67\) 10.8844i 1.32974i 0.746960 + 0.664869i \(0.231512\pi\)
−0.746960 + 0.664869i \(0.768488\pi\)
\(68\) −8.24205 + 0.261884i −0.999496 + 0.0317580i
\(69\) 0 0
\(70\) −11.2820 0.427779i −1.34845 0.0511293i
\(71\) 4.23091i 0.502116i 0.967972 + 0.251058i \(0.0807785\pi\)
−0.967972 + 0.251058i \(0.919221\pi\)
\(72\) 0 0
\(73\) 0.674683i 0.0789656i −0.999220 0.0394828i \(-0.987429\pi\)
0.999220 0.0394828i \(-0.0125710\pi\)
\(74\) 0.356585 9.40436i 0.0414522 1.09323i
\(75\) 0 0
\(76\) −1.04096 + 13.7071i −0.119407 + 1.57231i
\(77\) 13.5846i 1.54811i
\(78\) 0 0
\(79\) 1.43576i 0.161536i 0.996733 + 0.0807680i \(0.0257373\pi\)
−0.996733 + 0.0807680i \(0.974263\pi\)
\(80\) 12.5495 + 1.91716i 1.40308 + 0.214345i
\(81\) 0 0
\(82\) −7.12542 0.270175i −0.786871 0.0298358i
\(83\) 16.1494i 1.77262i −0.463088 0.886312i \(-0.653259\pi\)
0.463088 0.886312i \(-0.346741\pi\)
\(84\) 0 0
\(85\) 13.0102 1.40482i 1.41116 0.152374i
\(86\) −8.27913 0.313920i −0.892762 0.0338509i
\(87\) 0 0
\(88\) 1.73301 15.1766i 0.184739 1.61783i
\(89\) −9.77068 −1.03569 −0.517845 0.855475i \(-0.673266\pi\)
−0.517845 + 0.855475i \(0.673266\pi\)
\(90\) 0 0
\(91\) −9.09761 −0.953688
\(92\) −1.14306 + 15.0515i −0.119172 + 1.56922i
\(93\) 0 0
\(94\) −0.430195 + 11.3457i −0.0443712 + 1.17022i
\(95\) 21.8143i 2.23810i
\(96\) 0 0
\(97\) 0.954796i 0.0969449i −0.998825 0.0484724i \(-0.984565\pi\)
0.998825 0.0484724i \(-0.0154353\pi\)
\(98\) −0.0360533 + 0.950847i −0.00364193 + 0.0960501i
\(99\) 0 0
\(100\) −10.1167 0.768292i −1.01167 0.0768292i
\(101\) 11.7795i 1.17210i 0.810275 + 0.586050i \(0.199318\pi\)
−0.810275 + 0.586050i \(0.800682\pi\)
\(102\) 0 0
\(103\) −3.63788 −0.358451 −0.179225 0.983808i \(-0.557359\pi\)
−0.179225 + 0.983808i \(0.557359\pi\)
\(104\) 10.1638 + 1.16059i 0.996639 + 0.113805i
\(105\) 0 0
\(106\) −10.8502 0.411408i −1.05387 0.0399595i
\(107\) 2.78476 0.269213 0.134606 0.990899i \(-0.457023\pi\)
0.134606 + 0.990899i \(0.457023\pi\)
\(108\) 0 0
\(109\) −14.7517 −1.41296 −0.706479 0.707734i \(-0.749718\pi\)
−0.706479 + 0.707734i \(0.749718\pi\)
\(110\) −0.918455 + 24.2228i −0.0875713 + 2.30955i
\(111\) 0 0
\(112\) −1.51945 + 9.94615i −0.143574 + 0.939823i
\(113\) 7.57157i 0.712274i 0.934434 + 0.356137i \(0.115906\pi\)
−0.934434 + 0.356137i \(0.884094\pi\)
\(114\) 0 0
\(115\) 23.9538i 2.23370i
\(116\) 6.62565 + 0.503173i 0.615176 + 0.0467185i
\(117\) 0 0
\(118\) 5.98207 + 0.226822i 0.550694 + 0.0208807i
\(119\) 1.11339 + 10.3113i 0.102064 + 0.945232i
\(120\) 0 0
\(121\) 18.1667 1.65152
\(122\) 0.208004 5.48577i 0.0188318 0.496658i
\(123\) 0 0
\(124\) −0.197820 + 2.60485i −0.0177648 + 0.233922i
\(125\) 0.231351 0.0206927
\(126\) 0 0
\(127\) −8.80507 −0.781324 −0.390662 0.920534i \(-0.627754\pi\)
−0.390662 + 0.920534i \(0.627754\pi\)
\(128\) 2.96635 10.9179i 0.262191 0.965016i
\(129\) 0 0
\(130\) −16.2219 0.615088i −1.42276 0.0539467i
\(131\) −21.0088 −1.83555 −0.917773 0.397106i \(-0.870014\pi\)
−0.917773 + 0.397106i \(0.870014\pi\)
\(132\) 0 0
\(133\) 17.2890 1.49914
\(134\) −15.3818 0.583231i −1.32878 0.0503835i
\(135\) 0 0
\(136\) 0.0715510 11.6617i 0.00613545 0.999981i
\(137\) 15.9533 1.36298 0.681490 0.731828i \(-0.261332\pi\)
0.681490 + 0.731828i \(0.261332\pi\)
\(138\) 0 0
\(139\) 6.61325 0.560929 0.280464 0.959864i \(-0.409512\pi\)
0.280464 + 0.959864i \(0.409512\pi\)
\(140\) 1.20907 15.9207i 0.102185 1.34555i
\(141\) 0 0
\(142\) −5.97911 0.226710i −0.501756 0.0190251i
\(143\) 19.5329i 1.63342i
\(144\) 0 0
\(145\) −10.5445 −0.875670
\(146\) 0.953460 + 0.0361524i 0.0789089 + 0.00299199i
\(147\) 0 0
\(148\) 13.2711 + 1.00785i 1.09088 + 0.0828449i
\(149\) 15.3325i 1.25609i −0.778178 0.628044i \(-0.783856\pi\)
0.778178 0.628044i \(-0.216144\pi\)
\(150\) 0 0
\(151\) −1.10540 −0.0899565 −0.0449782 0.998988i \(-0.514322\pi\)
−0.0449782 + 0.998988i \(0.514322\pi\)
\(152\) −19.3151 2.20557i −1.56666 0.178895i
\(153\) 0 0
\(154\) −19.1978 0.727923i −1.54700 0.0586577i
\(155\) 4.14551i 0.332975i
\(156\) 0 0
\(157\) 17.6004i 1.40467i 0.711849 + 0.702333i \(0.247858\pi\)
−0.711849 + 0.702333i \(0.752142\pi\)
\(158\) −2.02902 0.0769343i −0.161420 0.00612056i
\(159\) 0 0
\(160\) −3.38179 + 17.6322i −0.267354 + 1.39395i
\(161\) 18.9846 1.49620
\(162\) 0 0
\(163\) −0.345904 −0.0270933 −0.0135467 0.999908i \(-0.504312\pi\)
−0.0135467 + 0.999908i \(0.504312\pi\)
\(164\) 0.763621 10.0552i 0.0596288 0.785176i
\(165\) 0 0
\(166\) 22.8223 + 0.865353i 1.77135 + 0.0671644i
\(167\) 20.7946i 1.60913i −0.593861 0.804567i \(-0.702397\pi\)
0.593861 0.804567i \(-0.297603\pi\)
\(168\) 0 0
\(169\) −0.0811240 −0.00624031
\(170\) 1.28814 + 18.4613i 0.0987958 + 1.41592i
\(171\) 0 0
\(172\) 0.887262 11.6832i 0.0676531 0.890838i
\(173\) −8.28576 −0.629954 −0.314977 0.949099i \(-0.601997\pi\)
−0.314977 + 0.949099i \(0.601997\pi\)
\(174\) 0 0
\(175\) 12.7603i 0.964587i
\(176\) 21.3547 + 3.26231i 1.60967 + 0.245906i
\(177\) 0 0
\(178\) 0.523555 13.8079i 0.0392421 1.03495i
\(179\) 17.2101i 1.28634i −0.765722 0.643172i \(-0.777618\pi\)
0.765722 0.643172i \(-0.222382\pi\)
\(180\) 0 0
\(181\) 1.76280 0.131028 0.0655141 0.997852i \(-0.479131\pi\)
0.0655141 + 0.997852i \(0.479131\pi\)
\(182\) 0.487489 12.8567i 0.0361351 0.953003i
\(183\) 0 0
\(184\) −21.2094 2.42189i −1.56358 0.178544i
\(185\) −21.1205 −1.55281
\(186\) 0 0
\(187\) 22.1386 2.39048i 1.61894 0.174809i
\(188\) −16.0107 1.21590i −1.16770 0.0886787i
\(189\) 0 0
\(190\) 30.8280 + 1.16890i 2.23650 + 0.0848012i
\(191\) −4.73825 −0.342848 −0.171424 0.985197i \(-0.554837\pi\)
−0.171424 + 0.985197i \(0.554837\pi\)
\(192\) 0 0
\(193\) 20.9493i 1.50796i −0.656897 0.753980i \(-0.728131\pi\)
0.656897 0.753980i \(-0.271869\pi\)
\(194\) 1.34932 + 0.0511621i 0.0968753 + 0.00367322i
\(195\) 0 0
\(196\) −1.34180 0.101901i −0.0958431 0.00727864i
\(197\) −8.35170 −0.595034 −0.297517 0.954716i \(-0.596159\pi\)
−0.297517 + 0.954716i \(0.596159\pi\)
\(198\) 0 0
\(199\) 12.3310i 0.874121i 0.899432 + 0.437060i \(0.143980\pi\)
−0.899432 + 0.437060i \(0.856020\pi\)
\(200\) 1.62784 14.2557i 0.115106 1.00803i
\(201\) 0 0
\(202\) −16.6467 0.631193i −1.17126 0.0444106i
\(203\) 8.35703i 0.586548i
\(204\) 0 0
\(205\) 16.0024i 1.11766i
\(206\) 0.194933 5.14104i 0.0135816 0.358193i
\(207\) 0 0
\(208\) −2.18476 + 14.3012i −0.151486 + 0.991611i
\(209\) 37.1200i 2.56765i
\(210\) 0 0
\(211\) −16.0368 −1.10402 −0.552010 0.833837i \(-0.686139\pi\)
−0.552010 + 0.833837i \(0.686139\pi\)
\(212\) 1.16280 15.3115i 0.0798616 1.05160i
\(213\) 0 0
\(214\) −0.149219 + 3.93541i −0.0102004 + 0.269019i
\(215\) 18.5934i 1.26806i
\(216\) 0 0
\(217\) 3.28553 0.223036
\(218\) 0.790460 20.8471i 0.0535367 1.41194i
\(219\) 0 0
\(220\) −34.1824 2.59592i −2.30457 0.175017i
\(221\) 1.60090 + 14.8262i 0.107688 + 0.997318i
\(222\) 0 0
\(223\) 10.0104 0.670349 0.335174 0.942156i \(-0.391205\pi\)
0.335174 + 0.942156i \(0.391205\pi\)
\(224\) −13.9745 2.68024i −0.933708 0.179081i
\(225\) 0 0
\(226\) −10.7001 0.405717i −0.711762 0.0269879i
\(227\) −14.0466 −0.932305 −0.466152 0.884704i \(-0.654360\pi\)
−0.466152 + 0.884704i \(0.654360\pi\)
\(228\) 0 0
\(229\) 3.35868i 0.221948i 0.993823 + 0.110974i \(0.0353970\pi\)
−0.993823 + 0.110974i \(0.964603\pi\)
\(230\) 33.8515 + 1.28355i 2.23210 + 0.0846346i
\(231\) 0 0
\(232\) −1.06611 + 9.33639i −0.0699938 + 0.612964i
\(233\) 15.1152i 0.990230i −0.868827 0.495115i \(-0.835126\pi\)
0.868827 0.495115i \(-0.164874\pi\)
\(234\) 0 0
\(235\) 25.4803 1.66215
\(236\) −0.641089 + 8.44169i −0.0417314 + 0.549507i
\(237\) 0 0
\(238\) −14.6315 + 1.02092i −0.948421 + 0.0661762i
\(239\) −11.3025 −0.731101 −0.365550 0.930792i \(-0.619119\pi\)
−0.365550 + 0.930792i \(0.619119\pi\)
\(240\) 0 0
\(241\) 23.8864i 1.53866i −0.638851 0.769330i \(-0.720590\pi\)
0.638851 0.769330i \(-0.279410\pi\)
\(242\) −0.973449 + 25.6731i −0.0625757 + 1.65033i
\(243\) 0 0
\(244\) 7.74133 + 0.587901i 0.495588 + 0.0376365i
\(245\) 2.13543 0.136427
\(246\) 0 0
\(247\) 24.8592 1.58175
\(248\) −3.67056 0.419138i −0.233081 0.0266153i
\(249\) 0 0
\(250\) −0.0123968 + 0.326945i −0.000784042 + 0.0206778i
\(251\) 7.16691i 0.452371i −0.974084 0.226186i \(-0.927374\pi\)
0.974084 0.226186i \(-0.0726256\pi\)
\(252\) 0 0
\(253\) 40.7606i 2.56260i
\(254\) 0.471813 12.4433i 0.0296042 0.780763i
\(255\) 0 0
\(256\) 15.2702 + 4.77707i 0.954389 + 0.298567i
\(257\) 5.46601 0.340960 0.170480 0.985361i \(-0.445468\pi\)
0.170480 + 0.985361i \(0.445468\pi\)
\(258\) 0 0
\(259\) 16.7391i 1.04011i
\(260\) 1.73848 22.8919i 0.107816 1.41969i
\(261\) 0 0
\(262\) 1.12574 29.6896i 0.0695484 1.83423i
\(263\) 15.2442 0.939997 0.469999 0.882667i \(-0.344254\pi\)
0.469999 + 0.882667i \(0.344254\pi\)
\(264\) 0 0
\(265\) 24.3676i 1.49689i
\(266\) −0.926417 + 24.4327i −0.0568023 + 1.49807i
\(267\) 0 0
\(268\) 1.64844 21.7062i 0.100695 1.32592i
\(269\) 6.61819 0.403518 0.201759 0.979435i \(-0.435334\pi\)
0.201759 + 0.979435i \(0.435334\pi\)
\(270\) 0 0
\(271\) −11.5920 −0.704166 −0.352083 0.935969i \(-0.614527\pi\)
−0.352083 + 0.935969i \(0.614527\pi\)
\(272\) 16.4764 + 0.725999i 0.999031 + 0.0440201i
\(273\) 0 0
\(274\) −0.854844 + 22.5451i −0.0516430 + 1.36200i
\(275\) 27.3968 1.65209
\(276\) 0 0
\(277\) 16.6679 1.00148 0.500738 0.865599i \(-0.333062\pi\)
0.500738 + 0.865599i \(0.333062\pi\)
\(278\) −0.354366 + 9.34584i −0.0212535 + 0.560526i
\(279\) 0 0
\(280\) 22.4344 + 2.56176i 1.34071 + 0.153094i
\(281\) 6.51175 0.388458 0.194229 0.980956i \(-0.437779\pi\)
0.194229 + 0.980956i \(0.437779\pi\)
\(282\) 0 0
\(283\) −21.2924 −1.26570 −0.632850 0.774275i \(-0.718115\pi\)
−0.632850 + 0.774275i \(0.718115\pi\)
\(284\) 0.640772 8.43752i 0.0380228 0.500675i
\(285\) 0 0
\(286\) −27.6038 1.04665i −1.63225 0.0618900i
\(287\) −12.6827 −0.748637
\(288\) 0 0
\(289\) 16.6082 3.62894i 0.976950 0.213467i
\(290\) 0.565017 14.9014i 0.0331789 0.875041i
\(291\) 0 0
\(292\) −0.102181 + 1.34549i −0.00597969 + 0.0787389i
\(293\) 6.20078i 0.362253i 0.983460 + 0.181127i \(0.0579744\pi\)
−0.983460 + 0.181127i \(0.942026\pi\)
\(294\) 0 0
\(295\) 13.4346i 0.782194i
\(296\) −2.13542 + 18.7007i −0.124119 + 1.08696i
\(297\) 0 0
\(298\) 21.6679 + 0.821581i 1.25519 + 0.0475929i
\(299\) 27.2973 1.57864
\(300\) 0 0
\(301\) −14.7362 −0.849382
\(302\) 0.0592322 1.56215i 0.00340843 0.0898919i
\(303\) 0 0
\(304\) 4.15189 27.1778i 0.238127 1.55876i
\(305\) −12.3200 −0.705442
\(306\) 0 0
\(307\) 3.96275i 0.226166i −0.993586 0.113083i \(-0.963927\pi\)
0.993586 0.113083i \(-0.0360726\pi\)
\(308\) 2.05740 27.0913i 0.117231 1.54367i
\(309\) 0 0
\(310\) 5.85843 + 0.222134i 0.332736 + 0.0126164i
\(311\) 6.26994i 0.355535i 0.984072 + 0.177768i \(0.0568876\pi\)
−0.984072 + 0.177768i \(0.943112\pi\)
\(312\) 0 0
\(313\) 10.7509i 0.607675i 0.952724 + 0.303838i \(0.0982681\pi\)
−0.952724 + 0.303838i \(0.901732\pi\)
\(314\) −24.8729 0.943105i −1.40366 0.0532225i
\(315\) 0 0
\(316\) 0.217447 2.86328i 0.0122323 0.161072i
\(317\) 17.0890 0.959815 0.479908 0.877319i \(-0.340670\pi\)
0.479908 + 0.877319i \(0.340670\pi\)
\(318\) 0 0
\(319\) −17.9428 −1.00461
\(320\) −24.7366 5.72394i −1.38282 0.319978i
\(321\) 0 0
\(322\) −1.01728 + 26.8290i −0.0566906 + 1.49512i
\(323\) −3.04233 28.1755i −0.169280 1.56773i
\(324\) 0 0
\(325\) 18.3476i 1.01774i
\(326\) 0.0185350 0.488831i 0.00102656 0.0270739i
\(327\) 0 0
\(328\) 14.1690 + 1.61795i 0.782353 + 0.0893361i
\(329\) 20.1945i 1.11336i
\(330\) 0 0
\(331\) 7.05539i 0.387799i −0.981021 0.193900i \(-0.937886\pi\)
0.981021 0.193900i \(-0.0621136\pi\)
\(332\) −2.44583 + 32.2060i −0.134232 + 1.76753i
\(333\) 0 0
\(334\) 29.3869 + 1.11426i 1.60798 + 0.0609698i
\(335\) 34.5446i 1.88737i
\(336\) 0 0
\(337\) 19.8274i 1.08007i 0.841643 + 0.540035i \(0.181589\pi\)
−0.841643 + 0.540035i \(0.818411\pi\)
\(338\) 0.00434697 0.114644i 0.000236444 0.00623583i
\(339\) 0 0
\(340\) −26.1585 + 0.831161i −1.41864 + 0.0450760i
\(341\) 7.05414i 0.382003i
\(342\) 0 0
\(343\) 19.3001i 1.04211i
\(344\) 16.4632 + 1.87991i 0.887635 + 0.101358i
\(345\) 0 0
\(346\) 0.443986 11.7094i 0.0238688 0.629502i
\(347\) 24.3591 1.30767 0.653833 0.756639i \(-0.273160\pi\)
0.653833 + 0.756639i \(0.273160\pi\)
\(348\) 0 0
\(349\) 1.20575i 0.0645421i −0.999479 0.0322710i \(-0.989726\pi\)
0.999479 0.0322710i \(-0.0102740\pi\)
\(350\) −18.0328 0.683751i −0.963894 0.0365480i
\(351\) 0 0
\(352\) −5.75457 + 30.0037i −0.306719 + 1.59920i
\(353\) −11.4575 −0.609820 −0.304910 0.952381i \(-0.598626\pi\)
−0.304910 + 0.952381i \(0.598626\pi\)
\(354\) 0 0
\(355\) 13.4280i 0.712683i
\(356\) 19.4852 + 1.47977i 1.03272 + 0.0784278i
\(357\) 0 0
\(358\) 24.3213 + 0.922191i 1.28542 + 0.0487393i
\(359\) 31.0234 1.63735 0.818677 0.574254i \(-0.194708\pi\)
0.818677 + 0.574254i \(0.194708\pi\)
\(360\) 0 0
\(361\) −28.2421 −1.48643
\(362\) −0.0944585 + 2.49119i −0.00496463 + 0.130934i
\(363\) 0 0
\(364\) 18.1430 + 1.37784i 0.950950 + 0.0722182i
\(365\) 2.14130i 0.112081i
\(366\) 0 0
\(367\) 9.00308i 0.469957i −0.972001 0.234978i \(-0.924498\pi\)
0.972001 0.234978i \(-0.0755020\pi\)
\(368\) 4.55910 29.8434i 0.237659 1.55569i
\(369\) 0 0
\(370\) 1.13172 29.8474i 0.0588356 1.55169i
\(371\) −19.3126 −1.00266
\(372\) 0 0
\(373\) 23.7413i 1.22928i 0.788809 + 0.614638i \(0.210698\pi\)
−0.788809 + 0.614638i \(0.789302\pi\)
\(374\) 2.19194 + 31.4144i 0.113343 + 1.62440i
\(375\) 0 0
\(376\) 2.57623 22.5611i 0.132859 1.16350i
\(377\) 12.0163i 0.618869i
\(378\) 0 0
\(379\) −10.7431 −0.551835 −0.275917 0.961181i \(-0.588982\pi\)
−0.275917 + 0.961181i \(0.588982\pi\)
\(380\) −3.30379 + 43.5034i −0.169481 + 2.23168i
\(381\) 0 0
\(382\) 0.253896 6.69609i 0.0129904 0.342602i
\(383\) 13.2678 0.677952 0.338976 0.940795i \(-0.389919\pi\)
0.338976 + 0.940795i \(0.389919\pi\)
\(384\) 0 0
\(385\) 43.1147i 2.19733i
\(386\) 29.6054 + 1.12255i 1.50688 + 0.0571363i
\(387\) 0 0
\(388\) −0.144604 + 1.90411i −0.00734117 + 0.0966665i
\(389\) 32.5854i 1.65214i 0.563565 + 0.826072i \(0.309429\pi\)
−0.563565 + 0.826072i \(0.690571\pi\)
\(390\) 0 0
\(391\) −3.34071 30.9389i −0.168947 1.56465i
\(392\) 0.215906 1.89077i 0.0109049 0.0954985i
\(393\) 0 0
\(394\) 0.447520 11.8026i 0.0225457 0.594607i
\(395\) 4.55680i 0.229277i
\(396\) 0 0
\(397\) −13.2519 −0.665092 −0.332546 0.943087i \(-0.607908\pi\)
−0.332546 + 0.943087i \(0.607908\pi\)
\(398\) −17.4261 0.660747i −0.873493 0.0331203i
\(399\) 0 0
\(400\) 20.0589 + 3.06434i 1.00294 + 0.153217i
\(401\) 12.2827i 0.613366i 0.951812 + 0.306683i \(0.0992192\pi\)
−0.951812 + 0.306683i \(0.900781\pi\)
\(402\) 0 0
\(403\) 4.72415 0.235326
\(404\) 1.78400 23.4913i 0.0887574 1.16873i
\(405\) 0 0
\(406\) 11.8101 + 0.447805i 0.586127 + 0.0222242i
\(407\) −35.9393 −1.78145
\(408\) 0 0
\(409\) −16.8564 −0.833493 −0.416747 0.909023i \(-0.636830\pi\)
−0.416747 + 0.909023i \(0.636830\pi\)
\(410\) −22.6145 0.857476i −1.11685 0.0423477i
\(411\) 0 0
\(412\) 7.25486 + 0.550958i 0.357422 + 0.0271437i
\(413\) 10.6476 0.523936
\(414\) 0 0
\(415\) 51.2546i 2.51599i
\(416\) −20.0934 3.85382i −0.985159 0.188949i
\(417\) 0 0
\(418\) 52.4579 + 1.98905i 2.56580 + 0.0972876i
\(419\) −7.38718 −0.360887 −0.180444 0.983585i \(-0.557753\pi\)
−0.180444 + 0.983585i \(0.557753\pi\)
\(420\) 0 0
\(421\) 20.6976i 1.00874i −0.863489 0.504369i \(-0.831725\pi\)
0.863489 0.504369i \(-0.168275\pi\)
\(422\) 0.859322 22.6632i 0.0418311 1.10323i
\(423\) 0 0
\(424\) 21.5758 + 2.46372i 1.04782 + 0.119649i
\(425\) 20.7952 2.24542i 1.00872 0.108919i
\(426\) 0 0
\(427\) 9.76425i 0.472525i
\(428\) −5.55352 0.421752i −0.268440 0.0203862i
\(429\) 0 0
\(430\) −26.2762 0.996314i −1.26715 0.0480465i
\(431\) 13.1852i 0.635107i −0.948240 0.317554i \(-0.897139\pi\)
0.948240 0.317554i \(-0.102861\pi\)
\(432\) 0 0
\(433\) 14.7426 0.708485 0.354243 0.935154i \(-0.384739\pi\)
0.354243 + 0.935154i \(0.384739\pi\)
\(434\) −0.176053 + 4.64310i −0.00845080 + 0.222876i
\(435\) 0 0
\(436\) 29.4187 + 2.23415i 1.40890 + 0.106996i
\(437\) −51.8755 −2.48154
\(438\) 0 0
\(439\) 6.15820i 0.293915i −0.989143 0.146958i \(-0.953052\pi\)
0.989143 0.146958i \(-0.0469481\pi\)
\(440\) 5.50018 48.1673i 0.262211 2.29629i
\(441\) 0 0
\(442\) −21.0381 + 1.46794i −1.00068 + 0.0698228i
\(443\) 2.64879i 0.125848i −0.998018 0.0629239i \(-0.979957\pi\)
0.998018 0.0629239i \(-0.0200425\pi\)
\(444\) 0 0
\(445\) −31.0100 −1.47002
\(446\) −0.536402 + 14.1467i −0.0253994 + 0.669867i
\(447\) 0 0
\(448\) 4.53652 19.6051i 0.214330 0.926252i
\(449\) 33.2045i 1.56702i −0.621381 0.783509i \(-0.713428\pi\)
0.621381 0.783509i \(-0.286572\pi\)
\(450\) 0 0
\(451\) 27.2302i 1.28222i
\(452\) 1.14672 15.0997i 0.0539370 0.710228i
\(453\) 0 0
\(454\) 0.752676 19.8506i 0.0353248 0.931635i
\(455\) −28.8738 −1.35363
\(456\) 0 0
\(457\) −21.2316 −0.993171 −0.496585 0.867988i \(-0.665413\pi\)
−0.496585 + 0.867988i \(0.665413\pi\)
\(458\) −4.74648 0.179972i −0.221789 0.00840956i
\(459\) 0 0
\(460\) −3.62781 + 47.7701i −0.169148 + 2.22729i
\(461\) 35.0837i 1.63401i −0.576631 0.817004i \(-0.695633\pi\)
0.576631 0.817004i \(-0.304367\pi\)
\(462\) 0 0
\(463\) −22.4625 −1.04392 −0.521960 0.852970i \(-0.674799\pi\)
−0.521960 + 0.852970i \(0.674799\pi\)
\(464\) −13.1370 2.00691i −0.609872 0.0931686i
\(465\) 0 0
\(466\) 21.3608 + 0.809937i 0.989519 + 0.0375196i
\(467\) 14.3658i 0.664772i 0.943143 + 0.332386i \(0.107854\pi\)
−0.943143 + 0.332386i \(0.892146\pi\)
\(468\) 0 0
\(469\) −27.3784 −1.26422
\(470\) −1.36535 + 36.0088i −0.0629787 + 1.66096i
\(471\) 0 0
\(472\) −11.8954 1.35833i −0.547532 0.0625221i
\(473\) 31.6392i 1.45477i
\(474\) 0 0
\(475\) 34.8675i 1.59983i
\(476\) −0.658738 20.7319i −0.0301932 0.950247i
\(477\) 0 0
\(478\) 0.605639 15.9727i 0.0277013 0.730576i
\(479\) 7.01618i 0.320577i 0.987070 + 0.160289i \(0.0512425\pi\)
−0.987070 + 0.160289i \(0.948758\pi\)
\(480\) 0 0
\(481\) 24.0685i 1.09743i
\(482\) 33.7563 + 1.27994i 1.53756 + 0.0582995i
\(483\) 0 0
\(484\) −36.2291 2.75135i −1.64678 0.125061i
\(485\) 3.03032i 0.137600i
\(486\) 0 0
\(487\) 24.5769i 1.11368i −0.830619 0.556842i \(-0.812013\pi\)
0.830619 0.556842i \(-0.187987\pi\)
\(488\) −1.24563 + 10.9085i −0.0563872 + 0.493806i
\(489\) 0 0
\(490\) −0.114425 + 3.01778i −0.00516921 + 0.136330i
\(491\) 7.60956i 0.343415i −0.985148 0.171707i \(-0.945072\pi\)
0.985148 0.171707i \(-0.0549283\pi\)
\(492\) 0 0
\(493\) −13.6193 + 1.47058i −0.613382 + 0.0662317i
\(494\) −1.33206 + 35.1310i −0.0599323 + 1.58062i
\(495\) 0 0
\(496\) 0.789010 5.16477i 0.0354276 0.231905i
\(497\) −10.6424 −0.477375
\(498\) 0 0
\(499\) −16.2432 −0.727144 −0.363572 0.931566i \(-0.618443\pi\)
−0.363572 + 0.931566i \(0.618443\pi\)
\(500\) −0.461374 0.0350382i −0.0206333 0.00156696i
\(501\) 0 0
\(502\) 10.1283 + 0.384033i 0.452046 + 0.0171402i
\(503\) 26.3137i 1.17327i −0.809851 0.586636i \(-0.800452\pi\)
0.809851 0.586636i \(-0.199548\pi\)
\(504\) 0 0
\(505\) 37.3854i 1.66363i
\(506\) 57.6028 + 2.18413i 2.56076 + 0.0970964i
\(507\) 0 0
\(508\) 17.5596 + 1.33353i 0.779081 + 0.0591659i
\(509\) 7.93657i 0.351782i 0.984410 + 0.175891i \(0.0562806\pi\)
−0.984410 + 0.175891i \(0.943719\pi\)
\(510\) 0 0
\(511\) 1.69709 0.0750747
\(512\) −7.56920 + 21.3239i −0.334514 + 0.942391i
\(513\) 0 0
\(514\) −0.292892 + 7.72456i −0.0129189 + 0.340716i
\(515\) −11.5458 −0.508770
\(516\) 0 0
\(517\) 43.3582 1.90689
\(518\) 23.6556 + 0.896950i 1.03937 + 0.0394097i
\(519\) 0 0
\(520\) 32.2576 + 3.68346i 1.41459 + 0.161530i
\(521\) 9.50069i 0.416233i 0.978104 + 0.208116i \(0.0667333\pi\)
−0.978104 + 0.208116i \(0.933267\pi\)
\(522\) 0 0
\(523\) 3.17435i 0.138805i −0.997589 0.0694024i \(-0.977891\pi\)
0.997589 0.0694024i \(-0.0221092\pi\)
\(524\) 41.8969 + 3.18179i 1.83027 + 0.138997i
\(525\) 0 0
\(526\) −0.816849 + 21.5431i −0.0356163 + 0.939322i
\(527\) −0.578153 5.35437i −0.0251847 0.233240i
\(528\) 0 0
\(529\) −33.9632 −1.47666
\(530\) −34.4363 1.30572i −1.49582 0.0567169i
\(531\) 0 0
\(532\) −34.4787 2.61842i −1.49484 0.113523i
\(533\) −18.2360 −0.789890
\(534\) 0 0
\(535\) 8.83821 0.382109
\(536\) 30.5869 + 3.49269i 1.32115 + 0.150861i
\(537\) 0 0
\(538\) −0.354631 + 9.35281i −0.0152892 + 0.403228i
\(539\) 3.63372 0.156515
\(540\) 0 0
\(541\) 19.5892 0.842205 0.421103 0.907013i \(-0.361643\pi\)
0.421103 + 0.907013i \(0.361643\pi\)
\(542\) 0.621151 16.3818i 0.0266807 0.703660i
\(543\) 0 0
\(544\) −1.90886 + 23.2456i −0.0818416 + 0.996645i
\(545\) −46.8187 −2.00549
\(546\) 0 0
\(547\) −17.5753 −0.751467 −0.375734 0.926728i \(-0.622609\pi\)
−0.375734 + 0.926728i \(0.622609\pi\)
\(548\) −31.8149 2.41613i −1.35907 0.103212i
\(549\) 0 0
\(550\) −1.46804 + 38.7171i −0.0625973 + 1.65090i
\(551\) 22.8356i 0.972828i
\(552\) 0 0
\(553\) −3.61150 −0.153576
\(554\) −0.893136 + 23.5550i −0.0379457 + 1.00076i
\(555\) 0 0
\(556\) −13.1885 1.00158i −0.559318 0.0424764i
\(557\) 30.3013i 1.28391i 0.766744 + 0.641953i \(0.221875\pi\)
−0.766744 + 0.641953i \(0.778125\pi\)
\(558\) 0 0
\(559\) −21.1887 −0.896186
\(560\) −4.82240 + 31.5669i −0.203784 + 1.33395i
\(561\) 0 0
\(562\) −0.348927 + 9.20239i −0.0147186 + 0.388179i
\(563\) 2.46670i 0.103959i −0.998648 0.0519794i \(-0.983447\pi\)
0.998648 0.0519794i \(-0.0165530\pi\)
\(564\) 0 0
\(565\) 24.0305i 1.01097i
\(566\) 1.14094 30.0903i 0.0479571 1.26479i
\(567\) 0 0
\(568\) 11.8895 + 1.35766i 0.498874 + 0.0569660i
\(569\) −21.6017 −0.905590 −0.452795 0.891615i \(-0.649573\pi\)
−0.452795 + 0.891615i \(0.649573\pi\)
\(570\) 0 0
\(571\) −10.9931 −0.460046 −0.230023 0.973185i \(-0.573880\pi\)
−0.230023 + 0.973185i \(0.573880\pi\)
\(572\) 2.95826 38.9536i 0.123691 1.62873i
\(573\) 0 0
\(574\) 0.679594 17.9232i 0.0283657 0.748099i
\(575\) 38.2872i 1.59668i
\(576\) 0 0
\(577\) 10.7397 0.447100 0.223550 0.974692i \(-0.428235\pi\)
0.223550 + 0.974692i \(0.428235\pi\)
\(578\) 4.23847 + 23.6651i 0.176297 + 0.984337i
\(579\) 0 0
\(580\) 21.0284 + 1.59696i 0.873155 + 0.0663102i
\(581\) 40.6219 1.68528
\(582\) 0 0
\(583\) 41.4648i 1.71730i
\(584\) −1.89597 0.216499i −0.0784558 0.00895879i
\(585\) 0 0
\(586\) −8.76292 0.332264i −0.361993 0.0137257i
\(587\) 35.1504i 1.45081i 0.688321 + 0.725406i \(0.258348\pi\)
−0.688321 + 0.725406i \(0.741652\pi\)
\(588\) 0 0
\(589\) −8.97771 −0.369920
\(590\) 18.9858 + 0.719884i 0.781632 + 0.0296372i
\(591\) 0 0
\(592\) −26.3134 4.01983i −1.08147 0.165214i
\(593\) 30.3326 1.24561 0.622805 0.782377i \(-0.285993\pi\)
0.622805 + 0.782377i \(0.285993\pi\)
\(594\) 0 0
\(595\) 3.53365 + 32.7257i 0.144866 + 1.34162i
\(596\) −2.32211 + 30.5770i −0.0951175 + 1.25248i
\(597\) 0 0
\(598\) −1.46271 + 38.5765i −0.0598145 + 1.57751i
\(599\) −31.3182 −1.27963 −0.639814 0.768530i \(-0.720988\pi\)
−0.639814 + 0.768530i \(0.720988\pi\)
\(600\) 0 0
\(601\) 30.7936i 1.25610i −0.778174 0.628048i \(-0.783854\pi\)
0.778174 0.628048i \(-0.216146\pi\)
\(602\) 0.789630 20.8252i 0.0321829 0.848772i
\(603\) 0 0
\(604\) 2.20446 + 0.167414i 0.0896982 + 0.00681197i
\(605\) 57.6571 2.34410
\(606\) 0 0
\(607\) 2.10908i 0.0856050i −0.999084 0.0428025i \(-0.986371\pi\)
0.999084 0.0428025i \(-0.0136286\pi\)
\(608\) 38.1852 + 7.32375i 1.54861 + 0.297017i
\(609\) 0 0
\(610\) 0.660159 17.4106i 0.0267291 0.704936i
\(611\) 29.0369i 1.17471i
\(612\) 0 0
\(613\) 18.9528i 0.765497i −0.923853 0.382749i \(-0.874978\pi\)
0.923853 0.382749i \(-0.125022\pi\)
\(614\) 5.60014 + 0.212341i 0.226003 + 0.00856938i
\(615\) 0 0
\(616\) 38.1751 + 4.35918i 1.53812 + 0.175636i
\(617\) 7.76650i 0.312668i −0.987704 0.156334i \(-0.950032\pi\)
0.987704 0.156334i \(-0.0499676\pi\)
\(618\) 0 0
\(619\) 17.1983 0.691258 0.345629 0.938371i \(-0.387666\pi\)
0.345629 + 0.938371i \(0.387666\pi\)
\(620\) −0.627839 + 8.26721i −0.0252146 + 0.332019i
\(621\) 0 0
\(622\) −8.86066 0.335970i −0.355280 0.0134712i
\(623\) 24.5770i 0.984658i
\(624\) 0 0
\(625\) −24.6302 −0.985209
\(626\) −15.1931 0.576078i −0.607239 0.0230247i
\(627\) 0 0
\(628\) 2.66559 35.0998i 0.106369 1.40063i
\(629\) −27.2793 + 2.94556i −1.08770 + 0.117447i
\(630\) 0 0
\(631\) −0.102276 −0.00407152 −0.00203576 0.999998i \(-0.500648\pi\)
−0.00203576 + 0.999998i \(0.500648\pi\)
\(632\) 4.03473 + 0.460722i 0.160493 + 0.0183265i
\(633\) 0 0
\(634\) −0.915703 + 24.1502i −0.0363672 + 0.959126i
\(635\) −27.9454 −1.10898
\(636\) 0 0
\(637\) 2.43349i 0.0964185i
\(638\) 0.961453 25.3568i 0.0380643 1.00388i
\(639\) 0 0
\(640\) 9.41456 34.6511i 0.372143 1.36970i
\(641\) 47.2480i 1.86618i −0.359639 0.933091i \(-0.617100\pi\)
0.359639 0.933091i \(-0.382900\pi\)
\(642\) 0 0
\(643\) 22.6820 0.894491 0.447245 0.894411i \(-0.352405\pi\)
0.447245 + 0.894411i \(0.352405\pi\)
\(644\) −37.8602 2.87523i −1.49190 0.113300i
\(645\) 0 0
\(646\) 39.9806 2.78965i 1.57302 0.109757i
\(647\) 42.0519 1.65323 0.826615 0.562768i \(-0.190264\pi\)
0.826615 + 0.562768i \(0.190264\pi\)
\(648\) 0 0
\(649\) 22.8608i 0.897366i
\(650\) −25.9287 0.983141i −1.01701 0.0385619i
\(651\) 0 0
\(652\) 0.689822 + 0.0523873i 0.0270155 + 0.00205165i
\(653\) 42.6516 1.66909 0.834544 0.550942i \(-0.185731\pi\)
0.834544 + 0.550942i \(0.185731\pi\)
\(654\) 0 0
\(655\) −66.6773 −2.60530
\(656\) −3.04571 + 19.9369i −0.118915 + 0.778406i
\(657\) 0 0
\(658\) −28.5388 1.08211i −1.11256 0.0421849i
\(659\) 1.41696i 0.0551970i −0.999619 0.0275985i \(-0.991214\pi\)
0.999619 0.0275985i \(-0.00878600\pi\)
\(660\) 0 0
\(661\) 11.2234i 0.436541i 0.975888 + 0.218270i \(0.0700415\pi\)
−0.975888 + 0.218270i \(0.929959\pi\)
\(662\) 9.97066 + 0.378058i 0.387521 + 0.0146936i
\(663\) 0 0
\(664\) −45.3824 5.18218i −1.76118 0.201107i
\(665\) 54.8714 2.12782
\(666\) 0 0
\(667\) 25.0752i 0.970916i
\(668\) −3.14935 + 41.4698i −0.121852 + 1.60451i
\(669\) 0 0
\(670\) −48.8184 1.85105i −1.88602 0.0715122i
\(671\) −20.9642 −0.809313
\(672\) 0 0
\(673\) 22.9936i 0.886337i 0.896438 + 0.443169i \(0.146146\pi\)
−0.896438 + 0.443169i \(0.853854\pi\)
\(674\) −28.0201 1.06244i −1.07929 0.0409236i
\(675\) 0 0
\(676\) 0.161782 + 0.0122863i 0.00622239 + 0.000472548i
\(677\) −39.4852 −1.51754 −0.758771 0.651358i \(-0.774200\pi\)
−0.758771 + 0.651358i \(0.774200\pi\)
\(678\) 0 0
\(679\) 2.40168 0.0921681
\(680\) 0.227087 37.0116i 0.00870840 1.41933i
\(681\) 0 0
\(682\) 9.96890 + 0.377991i 0.381729 + 0.0144740i
\(683\) 20.6340 0.789537 0.394768 0.918781i \(-0.370825\pi\)
0.394768 + 0.918781i \(0.370825\pi\)
\(684\) 0 0
\(685\) 50.6322 1.93456
\(686\) −27.2749 1.03418i −1.04136 0.0394853i
\(687\) 0 0
\(688\) −3.53886 + 23.1650i −0.134918 + 0.883157i
\(689\) −27.7689 −1.05791
\(690\) 0 0
\(691\) −19.5064 −0.742057 −0.371028 0.928622i \(-0.620995\pi\)
−0.371028 + 0.928622i \(0.620995\pi\)
\(692\) 16.5239 + 1.25488i 0.628146 + 0.0477034i
\(693\) 0 0
\(694\) −1.30527 + 34.4243i −0.0495472 + 1.30673i
\(695\) 20.9890 0.796159
\(696\) 0 0
\(697\) 2.23177 + 20.6688i 0.0845344 + 0.782886i
\(698\) 1.70396 + 0.0646090i 0.0644957 + 0.00244549i
\(699\) 0 0
\(700\) 1.93255 25.4473i 0.0730435 0.961817i
\(701\) 22.6742i 0.856392i 0.903686 + 0.428196i \(0.140851\pi\)
−0.903686 + 0.428196i \(0.859149\pi\)
\(702\) 0 0
\(703\) 45.7394i 1.72510i
\(704\) −42.0927 9.74007i −1.58643 0.367093i
\(705\) 0 0
\(706\) 0.613941 16.1917i 0.0231060 0.609383i
\(707\) −29.6299 −1.11435
\(708\) 0 0
\(709\) 2.38593 0.0896056 0.0448028 0.998996i \(-0.485734\pi\)
0.0448028 + 0.998996i \(0.485734\pi\)
\(710\) −18.9764 0.719528i −0.712171 0.0270034i
\(711\) 0 0
\(712\) −3.13531 + 27.4572i −0.117501 + 1.02900i
\(713\) −9.85821 −0.369193
\(714\) 0 0
\(715\) 61.9931i 2.31841i
\(716\) −2.60648 + 34.3214i −0.0974086 + 1.28265i
\(717\) 0 0
\(718\) −1.66237 + 43.8423i −0.0620390 + 1.63618i
\(719\) 29.3055i 1.09291i 0.837489 + 0.546455i \(0.184023\pi\)
−0.837489 + 0.546455i \(0.815977\pi\)
\(720\) 0 0
\(721\) 9.15067i 0.340789i
\(722\) 1.51333 39.9117i 0.0563204 1.48536i
\(723\) 0 0
\(724\) −3.51548 0.266977i −0.130652 0.00992213i
\(725\) −16.8540 −0.625942
\(726\) 0 0
\(727\) 21.2949 0.789785 0.394892 0.918727i \(-0.370782\pi\)
0.394892 + 0.918727i \(0.370782\pi\)
\(728\) −2.91933 + 25.5658i −0.108198 + 0.947531i
\(729\) 0 0
\(730\) 3.02608 + 0.114740i 0.112000 + 0.00424671i
\(731\) 2.59313 + 24.0154i 0.0959103 + 0.888240i
\(732\) 0 0
\(733\) 34.3060i 1.26712i −0.773693 0.633561i \(-0.781593\pi\)
0.773693 0.633561i \(-0.218407\pi\)
\(734\) 12.7231 + 0.482423i 0.469619 + 0.0178066i
\(735\) 0 0
\(736\) 41.9303 + 8.04204i 1.54557 + 0.296434i
\(737\) 58.7823i 2.16527i
\(738\) 0 0
\(739\) 35.2799i 1.29779i 0.760877 + 0.648896i \(0.224769\pi\)
−0.760877 + 0.648896i \(0.775231\pi\)
\(740\) 42.1196 + 3.19870i 1.54835 + 0.117587i
\(741\) 0 0
\(742\) 1.03485 27.2925i 0.0379906 1.00194i
\(743\) 19.0184i 0.697719i 0.937175 + 0.348859i \(0.113431\pi\)
−0.937175 + 0.348859i \(0.886569\pi\)
\(744\) 0 0
\(745\) 48.6620i 1.78284i
\(746\) −33.5511 1.27216i −1.22839 0.0465770i
\(747\) 0 0
\(748\) −44.5122 + 1.41433i −1.62753 + 0.0517131i
\(749\) 7.00474i 0.255948i
\(750\) 0 0
\(751\) 38.5164i 1.40548i 0.711446 + 0.702741i \(0.248041\pi\)
−0.711446 + 0.702741i \(0.751959\pi\)
\(752\) 31.7452 + 4.84964i 1.15763 + 0.176848i
\(753\) 0 0
\(754\) 16.9814 + 0.643883i 0.618425 + 0.0234488i
\(755\) −3.50831 −0.127681
\(756\) 0 0
\(757\) 13.2396i 0.481200i −0.970624 0.240600i \(-0.922656\pi\)
0.970624 0.240600i \(-0.0773442\pi\)
\(758\) 0.575660 15.1821i 0.0209089 0.551438i
\(759\) 0 0
\(760\) −61.3019 7.00000i −2.22365 0.253917i
\(761\) −23.2876 −0.844173 −0.422087 0.906556i \(-0.638702\pi\)
−0.422087 + 0.906556i \(0.638702\pi\)
\(762\) 0 0
\(763\) 37.1063i 1.34334i
\(764\) 9.44929 + 0.717610i 0.341863 + 0.0259622i
\(765\) 0 0
\(766\) −0.710944 + 18.7500i −0.0256875 + 0.677465i
\(767\) 15.3098 0.552806
\(768\) 0 0
\(769\) 18.6064 0.670964 0.335482 0.942047i \(-0.391101\pi\)
0.335482 + 0.942047i \(0.391101\pi\)
\(770\) −60.9296 2.31027i −2.19575 0.0832563i
\(771\) 0 0
\(772\) −3.17277 + 41.7782i −0.114191 + 1.50363i
\(773\) 14.1210i 0.507898i −0.967218 0.253949i \(-0.918270\pi\)
0.967218 0.253949i \(-0.0817295\pi\)
\(774\) 0 0
\(775\) 6.62608i 0.238016i
\(776\) −2.68314 0.306385i −0.0963190 0.0109986i
\(777\) 0 0
\(778\) −46.0496 1.74606i −1.65096 0.0625994i
\(779\) 34.6555 1.24166
\(780\) 0 0
\(781\) 22.8495i 0.817620i
\(782\) 43.9018 3.06325i 1.56992 0.109542i
\(783\) 0 0
\(784\) 2.66047 + 0.406433i 0.0950168 + 0.0145155i
\(785\) 55.8599i 1.99372i
\(786\) 0 0
\(787\) 36.6396 1.30606 0.653030 0.757332i \(-0.273497\pi\)
0.653030 + 0.757332i \(0.273497\pi\)
\(788\) 16.6554 + 1.26487i 0.593326 + 0.0450591i
\(789\) 0 0
\(790\) −6.43966 0.244173i −0.229113 0.00868727i
\(791\) −19.0454 −0.677177
\(792\) 0 0
\(793\) 14.0397i 0.498563i
\(794\) 0.710091 18.7275i 0.0252002 0.664614i
\(795\) 0 0
\(796\) 1.86753 24.5912i 0.0661930 0.871611i
\(797\) 38.0109i 1.34642i −0.739453 0.673208i \(-0.764916\pi\)
0.739453 0.673208i \(-0.235084\pi\)
\(798\) 0 0
\(799\) 32.9106 3.55361i 1.16429 0.125718i
\(800\) −5.40536 + 28.1829i −0.191108 + 0.996418i
\(801\) 0 0
\(802\) −17.3578 0.658157i −0.612926 0.0232403i
\(803\) 3.64370i 0.128584i
\(804\) 0 0
\(805\) 60.2531 2.12364
\(806\) −0.253140 + 6.67615i −0.00891647 + 0.235157i
\(807\) 0 0
\(808\) 33.1022 + 3.77991i 1.16453 + 0.132977i
\(809\) 1.43730i 0.0505328i −0.999681 0.0252664i \(-0.991957\pi\)
0.999681 0.0252664i \(-0.00804340\pi\)
\(810\) 0 0
\(811\) 32.8607 1.15390 0.576948 0.816781i \(-0.304244\pi\)
0.576948 + 0.816781i \(0.304244\pi\)
\(812\) −1.26567 + 16.6661i −0.0444165 + 0.584864i
\(813\) 0 0
\(814\) 1.92578 50.7894i 0.0674986 1.78017i
\(815\) −1.09783 −0.0384551
\(816\) 0 0
\(817\) 40.2667 1.40875
\(818\) 0.903235 23.8214i 0.0315809 0.832895i
\(819\) 0 0
\(820\) 2.42357 31.9129i 0.0846346 1.11445i
\(821\) −20.4356 −0.713207 −0.356604 0.934256i \(-0.616065\pi\)
−0.356604 + 0.934256i \(0.616065\pi\)
\(822\) 0 0
\(823\) 35.9374i 1.25270i 0.779543 + 0.626349i \(0.215451\pi\)
−0.779543 + 0.626349i \(0.784549\pi\)
\(824\) −1.16736 + 10.2230i −0.0406669 + 0.356136i
\(825\) 0 0
\(826\) −0.570545 + 15.0472i −0.0198518 + 0.523559i
\(827\) −54.9541 −1.91094 −0.955470 0.295089i \(-0.904651\pi\)
−0.955470 + 0.295089i \(0.904651\pi\)
\(828\) 0 0
\(829\) 15.4841i 0.537785i −0.963170 0.268893i \(-0.913342\pi\)
0.963170 0.268893i \(-0.0866577\pi\)
\(830\) 72.4329 + 2.74644i 2.51418 + 0.0953303i
\(831\) 0 0
\(832\) 6.52290 28.1894i 0.226141 0.977292i
\(833\) 2.75813 0.297817i 0.0955636 0.0103188i
\(834\) 0 0
\(835\) 65.9976i 2.28394i
\(836\) −5.62184 + 74.0269i −0.194435 + 2.56027i
\(837\) 0 0
\(838\) 0.395837 10.4395i 0.0136739 0.360628i
\(839\) 23.2368i 0.802224i −0.916029 0.401112i \(-0.868624\pi\)
0.916029 0.401112i \(-0.131376\pi\)
\(840\) 0 0
\(841\) −17.9619 −0.619376
\(842\) 29.2497 + 1.10906i 1.00801 + 0.0382208i
\(843\) 0 0
\(844\) 31.9816 + 2.42878i 1.10085 + 0.0836022i
\(845\) −0.257470 −0.00885723
\(846\) 0 0
\(847\) 45.6962i 1.57014i
\(848\) −4.63786 + 30.3589i −0.159265 + 1.04253i
\(849\) 0 0
\(850\) 2.05893 + 29.5081i 0.0706207 + 1.01212i
\(851\) 50.2254i 1.72171i
\(852\) 0 0
\(853\) −34.7441 −1.18962 −0.594808 0.803868i \(-0.702772\pi\)
−0.594808 + 0.803868i \(0.702772\pi\)
\(854\) 13.7988 + 0.523210i 0.472186 + 0.0179039i
\(855\) 0 0
\(856\) 0.893601 7.82563i 0.0305427 0.267474i
\(857\) 40.0894i 1.36943i −0.728811 0.684715i \(-0.759927\pi\)
0.728811 0.684715i \(-0.240073\pi\)
\(858\) 0 0
\(859\) 18.2273i 0.621906i 0.950425 + 0.310953i \(0.100648\pi\)
−0.950425 + 0.310953i \(0.899352\pi\)
\(860\) 2.81598 37.0800i 0.0960240 1.26442i
\(861\) 0 0
\(862\) 18.6333 + 0.706517i 0.634651 + 0.0240641i
\(863\) −36.4069 −1.23930 −0.619652 0.784877i \(-0.712726\pi\)
−0.619652 + 0.784877i \(0.712726\pi\)
\(864\) 0 0
\(865\) −26.2972 −0.894131
\(866\) −0.789973 + 20.8342i −0.0268444 + 0.707977i
\(867\) 0 0
\(868\) −6.55219 0.497595i −0.222396 0.0168895i
\(869\) 7.75401i 0.263037i
\(870\) 0 0
\(871\) −39.3664 −1.33388
\(872\) −4.73368 + 41.4548i −0.160303 + 1.40384i
\(873\) 0 0
\(874\) 2.77971 73.3103i 0.0940250 2.47976i
\(875\) 0.581938i 0.0196731i
\(876\) 0 0
\(877\) −34.0214 −1.14882 −0.574410 0.818568i \(-0.694768\pi\)
−0.574410 + 0.818568i \(0.694768\pi\)
\(878\) 8.70276 + 0.329983i 0.293704 + 0.0111364i
\(879\) 0 0
\(880\) 67.7753 + 10.3539i 2.28470 + 0.349029i
\(881\) 56.8188i 1.91427i 0.289637 + 0.957137i \(0.406466\pi\)
−0.289637 + 0.957137i \(0.593534\pi\)
\(882\) 0 0
\(883\) 25.0090i 0.841619i −0.907149 0.420810i \(-0.861746\pi\)
0.907149 0.420810i \(-0.138254\pi\)
\(884\) −0.947176 29.8097i −0.0318570 1.00261i
\(885\) 0 0
\(886\) 3.74326 + 0.141933i 0.125757 + 0.00476835i
\(887\) 20.9573i 0.703679i −0.936060 0.351839i \(-0.885556\pi\)
0.936060 0.351839i \(-0.114444\pi\)
\(888\) 0 0
\(889\) 22.1482i 0.742825i
\(890\) 1.66165 43.8233i 0.0556986 1.46896i
\(891\) 0 0
\(892\) −19.9634 1.51609i −0.668424 0.0507623i
\(893\) 55.1814i 1.84657i
\(894\) 0 0
\(895\) 54.6211i 1.82578i
\(896\) 27.4628 + 7.46153i 0.917466 + 0.249272i
\(897\) 0 0
\(898\) 46.9245 + 1.77924i 1.56589 + 0.0593740i
\(899\) 4.33958i 0.144733i
\(900\) 0 0
\(901\) 3.39843 + 31.4734i 0.113218 + 1.04853i
\(902\) −38.4817 1.45911i −1.28130 0.0485831i
\(903\) 0 0
\(904\) 21.2774 + 2.42964i 0.707675 + 0.0808087i
\(905\) 5.59475 0.185976
\(906\) 0 0
\(907\) 27.8495 0.924727 0.462363 0.886691i \(-0.347002\pi\)
0.462363 + 0.886691i \(0.347002\pi\)
\(908\) 28.0125 + 2.12736i 0.929628 + 0.0705989i
\(909\) 0 0
\(910\) 1.54718 40.8044i 0.0512886 1.35265i
\(911\) 21.9920i 0.728626i −0.931276 0.364313i \(-0.881304\pi\)
0.931276 0.364313i \(-0.118696\pi\)
\(912\) 0 0
\(913\) 87.2166i 2.88645i
\(914\) 1.13768 30.0044i 0.0376310 0.992458i
\(915\) 0 0
\(916\) 0.508674 6.69808i 0.0168070 0.221311i
\(917\) 52.8452i 1.74510i
\(918\) 0 0
\(919\) 11.9263 0.393412 0.196706 0.980462i \(-0.436975\pi\)
0.196706 + 0.980462i \(0.436975\pi\)
\(920\) −67.3141 7.68654i −2.21928 0.253418i
\(921\) 0 0
\(922\) 49.5802 + 1.87993i 1.63284 + 0.0619123i
\(923\) −15.3023 −0.503680
\(924\) 0 0
\(925\) −33.7584 −1.10997
\(926\) 1.20363 31.7439i 0.0395539 1.04317i
\(927\) 0 0
\(928\) 3.54011 18.4577i 0.116210 0.605904i
\(929\) 33.2071i 1.08949i −0.838602 0.544744i \(-0.816627\pi\)
0.838602 0.544744i \(-0.183373\pi\)
\(930\) 0 0
\(931\) 4.62458i 0.151565i
\(932\) −2.28920 + 30.1436i −0.0749854 + 0.987387i
\(933\) 0 0
\(934\) −20.3018 0.769783i −0.664295 0.0251881i
\(935\) 70.2632 7.58687i 2.29785 0.248117i
\(936\) 0 0
\(937\) 30.7131 1.00335 0.501677 0.865055i \(-0.332717\pi\)
0.501677 + 0.865055i \(0.332717\pi\)
\(938\) 1.46705 38.6911i 0.0479009 1.26331i
\(939\) 0 0
\(940\) −50.8144 3.85901i −1.65738 0.125867i
\(941\) −11.5870 −0.377724 −0.188862 0.982004i \(-0.560480\pi\)
−0.188862 + 0.982004i \(0.560480\pi\)
\(942\) 0 0
\(943\) 38.0544 1.23922
\(944\) 2.55699 16.7378i 0.0832231 0.544769i
\(945\) 0 0
\(946\) −44.7124 1.69536i −1.45373 0.0551210i
\(947\) 27.4089 0.890669 0.445334 0.895364i \(-0.353085\pi\)
0.445334 + 0.895364i \(0.353085\pi\)
\(948\) 0 0
\(949\) 2.44018 0.0792116
\(950\) 49.2746 + 1.86835i 1.59868 + 0.0606172i
\(951\) 0 0
\(952\) 29.3336 + 0.179978i 0.950709 + 0.00583313i
\(953\) 33.5870 1.08799 0.543994 0.839089i \(-0.316911\pi\)
0.543994 + 0.839089i \(0.316911\pi\)
\(954\) 0 0
\(955\) −15.0382 −0.486624
\(956\) 22.5402 + 1.71177i 0.729002 + 0.0553627i
\(957\) 0 0
\(958\) −9.91525 0.375957i −0.320347 0.0121466i
\(959\) 40.1286i 1.29582i
\(960\) 0 0
\(961\) 29.2939 0.944965
\(962\) 34.0135 + 1.28969i 1.09664 + 0.0415813i
\(963\) 0 0
\(964\) −3.61761 + 47.6357i −0.116515 + 1.53424i
\(965\) 66.4884i 2.14034i
\(966\) 0 0
\(967\) 37.3601 1.20142 0.600710 0.799467i \(-0.294885\pi\)
0.600710 + 0.799467i \(0.294885\pi\)
\(968\) 5.82951 51.0514i 0.187368 1.64085i
\(969\) 0 0
\(970\) 4.28244 + 0.162377i 0.137501 + 0.00521362i
\(971\) 7.46186i 0.239463i −0.992806 0.119731i \(-0.961797\pi\)
0.992806 0.119731i \(-0.0382033\pi\)
\(972\) 0 0
\(973\) 16.6349i 0.533290i
\(974\) 34.7320 + 1.31693i 1.11288 + 0.0421972i
\(975\) 0 0
\(976\) −15.3492 2.34485i −0.491315 0.0750569i
\(977\) 31.4037 1.00469 0.502346 0.864666i \(-0.332470\pi\)
0.502346 + 0.864666i \(0.332470\pi\)
\(978\) 0 0
\(979\) −52.7677 −1.68646
\(980\) −4.25859 0.323411i −0.136036 0.0103310i
\(981\) 0 0
\(982\) 10.7538 + 0.407753i 0.343168 + 0.0130119i
\(983\) 2.30014i 0.0733630i −0.999327 0.0366815i \(-0.988321\pi\)
0.999327 0.0366815i \(-0.0116787\pi\)
\(984\) 0 0
\(985\) −26.5065 −0.844567
\(986\) −1.34844 19.3256i −0.0429432 0.615451i
\(987\) 0 0
\(988\) −49.5756 3.76493i −1.57721 0.119779i
\(989\) 44.2160 1.40599
\(990\) 0 0
\(991\) 18.2755i 0.580539i −0.956945 0.290269i \(-0.906255\pi\)
0.956945 0.290269i \(-0.0937450\pi\)
\(992\) 7.25657 + 1.39178i 0.230396 + 0.0441890i
\(993\) 0 0
\(994\) 0.570263 15.0398i 0.0180877 0.477032i
\(995\) 39.1359i 1.24069i
\(996\) 0 0
\(997\) 6.78517 0.214888 0.107444 0.994211i \(-0.465733\pi\)
0.107444 + 0.994211i \(0.465733\pi\)
\(998\) 0.870378 22.9548i 0.0275513 0.726622i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1224.2.l.d.1189.10 18
3.2 odd 2 408.2.l.b.373.9 yes 18
4.3 odd 2 4896.2.l.d.3025.15 18
8.3 odd 2 4896.2.l.c.3025.3 18
8.5 even 2 1224.2.l.c.1189.9 18
12.11 even 2 1632.2.l.a.1393.3 18
17.16 even 2 1224.2.l.c.1189.10 18
24.5 odd 2 408.2.l.a.373.10 yes 18
24.11 even 2 1632.2.l.b.1393.15 18
51.50 odd 2 408.2.l.a.373.9 18
68.67 odd 2 4896.2.l.c.3025.4 18
136.67 odd 2 4896.2.l.d.3025.16 18
136.101 even 2 inner 1224.2.l.d.1189.9 18
204.203 even 2 1632.2.l.b.1393.16 18
408.101 odd 2 408.2.l.b.373.10 yes 18
408.203 even 2 1632.2.l.a.1393.4 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.l.a.373.9 18 51.50 odd 2
408.2.l.a.373.10 yes 18 24.5 odd 2
408.2.l.b.373.9 yes 18 3.2 odd 2
408.2.l.b.373.10 yes 18 408.101 odd 2
1224.2.l.c.1189.9 18 8.5 even 2
1224.2.l.c.1189.10 18 17.16 even 2
1224.2.l.d.1189.9 18 136.101 even 2 inner
1224.2.l.d.1189.10 18 1.1 even 1 trivial
1632.2.l.a.1393.3 18 12.11 even 2
1632.2.l.a.1393.4 18 408.203 even 2
1632.2.l.b.1393.15 18 24.11 even 2
1632.2.l.b.1393.16 18 204.203 even 2
4896.2.l.c.3025.3 18 8.3 odd 2
4896.2.l.c.3025.4 18 68.67 odd 2
4896.2.l.d.3025.15 18 4.3 odd 2
4896.2.l.d.3025.16 18 136.67 odd 2