Properties

Label 1632.2.l.a.1393.4
Level $1632$
Weight $2$
Character 1632.1393
Analytic conductor $13.032$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1632,2,Mod(1393,1632)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1632, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1632.1393");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1632 = 2^{5} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1632.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0315856099\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{16} - 2x^{14} + 2x^{12} - 4x^{11} + 4x^{10} + 8x^{8} - 16x^{7} + 16x^{6} - 64x^{4} - 128x^{2} + 512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: no (minimal twist has level 408)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1393.4
Root \(-0.0535843 + 1.41320i\) of defining polynomial
Character \(\chi\) \(=\) 1632.1393
Dual form 1632.2.l.a.1393.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -3.17378 q^{5} +2.51539i q^{7} +1.00000 q^{9} +5.40062 q^{11} -3.61678i q^{13} +3.17378 q^{15} +(-4.09928 - 0.442631i) q^{17} -6.87329i q^{19} -2.51539i q^{21} +7.54740i q^{23} +5.07289 q^{25} -1.00000 q^{27} +3.32236 q^{29} -1.30617i q^{31} -5.40062 q^{33} -7.98329i q^{35} -6.65467 q^{37} +3.61678i q^{39} +5.04206i q^{41} +5.85844i q^{43} -3.17378 q^{45} +8.02838 q^{47} +0.672834 q^{49} +(4.09928 + 0.442631i) q^{51} +7.67778i q^{53} -17.1404 q^{55} +6.87329i q^{57} +4.23300i q^{59} -3.88181 q^{61} +2.51539i q^{63} +11.4789i q^{65} +10.8844i q^{67} -7.54740i q^{69} -4.23091i q^{71} +0.674683i q^{73} -5.07289 q^{75} +13.5846i q^{77} +1.43576i q^{79} +1.00000 q^{81} +16.1494i q^{83} +(13.0102 + 1.40482i) q^{85} -3.32236 q^{87} +9.77068 q^{89} +9.09761 q^{91} +1.30617i q^{93} +21.8143i q^{95} +0.954796i q^{97} +5.40062 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 18 q^{3} - 4 q^{5} + 18 q^{9} + 4 q^{15} - 2 q^{17} + 22 q^{25} - 18 q^{27} + 12 q^{29} - 16 q^{37} - 4 q^{45} - 18 q^{49} + 2 q^{51} + 16 q^{55} - 16 q^{61} - 22 q^{75} + 18 q^{81} + 16 q^{85} - 12 q^{87}+ \cdots + 20 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1632\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(545\) \(613\) \(1057\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −3.17378 −1.41936 −0.709679 0.704525i \(-0.751160\pi\)
−0.709679 + 0.704525i \(0.751160\pi\)
\(6\) 0 0
\(7\) 2.51539i 0.950727i 0.879790 + 0.475363i \(0.157683\pi\)
−0.879790 + 0.475363i \(0.842317\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 5.40062 1.62835 0.814174 0.580621i \(-0.197190\pi\)
0.814174 + 0.580621i \(0.197190\pi\)
\(12\) 0 0
\(13\) 3.61678i 1.00312i −0.865124 0.501558i \(-0.832761\pi\)
0.865124 0.501558i \(-0.167239\pi\)
\(14\) 0 0
\(15\) 3.17378 0.819467
\(16\) 0 0
\(17\) −4.09928 0.442631i −0.994221 0.107354i
\(18\) 0 0
\(19\) 6.87329i 1.57684i −0.615137 0.788420i \(-0.710899\pi\)
0.615137 0.788420i \(-0.289101\pi\)
\(20\) 0 0
\(21\) 2.51539i 0.548902i
\(22\) 0 0
\(23\) 7.54740i 1.57374i 0.617118 + 0.786871i \(0.288300\pi\)
−0.617118 + 0.786871i \(0.711700\pi\)
\(24\) 0 0
\(25\) 5.07289 1.01458
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 3.32236 0.616947 0.308474 0.951233i \(-0.400182\pi\)
0.308474 + 0.951233i \(0.400182\pi\)
\(30\) 0 0
\(31\) 1.30617i 0.234596i −0.993097 0.117298i \(-0.962577\pi\)
0.993097 0.117298i \(-0.0374232\pi\)
\(32\) 0 0
\(33\) −5.40062 −0.940127
\(34\) 0 0
\(35\) 7.98329i 1.34942i
\(36\) 0 0
\(37\) −6.65467 −1.09402 −0.547010 0.837126i \(-0.684234\pi\)
−0.547010 + 0.837126i \(0.684234\pi\)
\(38\) 0 0
\(39\) 3.61678i 0.579149i
\(40\) 0 0
\(41\) 5.04206i 0.787437i 0.919231 + 0.393718i \(0.128811\pi\)
−0.919231 + 0.393718i \(0.871189\pi\)
\(42\) 0 0
\(43\) 5.85844i 0.893403i 0.894683 + 0.446702i \(0.147401\pi\)
−0.894683 + 0.446702i \(0.852599\pi\)
\(44\) 0 0
\(45\) −3.17378 −0.473120
\(46\) 0 0
\(47\) 8.02838 1.17106 0.585530 0.810651i \(-0.300886\pi\)
0.585530 + 0.810651i \(0.300886\pi\)
\(48\) 0 0
\(49\) 0.672834 0.0961191
\(50\) 0 0
\(51\) 4.09928 + 0.442631i 0.574014 + 0.0619808i
\(52\) 0 0
\(53\) 7.67778i 1.05462i 0.849672 + 0.527312i \(0.176800\pi\)
−0.849672 + 0.527312i \(0.823200\pi\)
\(54\) 0 0
\(55\) −17.1404 −2.31121
\(56\) 0 0
\(57\) 6.87329i 0.910389i
\(58\) 0 0
\(59\) 4.23300i 0.551090i 0.961288 + 0.275545i \(0.0888582\pi\)
−0.961288 + 0.275545i \(0.911142\pi\)
\(60\) 0 0
\(61\) −3.88181 −0.497015 −0.248507 0.968630i \(-0.579940\pi\)
−0.248507 + 0.968630i \(0.579940\pi\)
\(62\) 0 0
\(63\) 2.51539i 0.316909i
\(64\) 0 0
\(65\) 11.4789i 1.42378i
\(66\) 0 0
\(67\) 10.8844i 1.32974i 0.746960 + 0.664869i \(0.231512\pi\)
−0.746960 + 0.664869i \(0.768488\pi\)
\(68\) 0 0
\(69\) 7.54740i 0.908600i
\(70\) 0 0
\(71\) 4.23091i 0.502116i −0.967972 0.251058i \(-0.919221\pi\)
0.967972 0.251058i \(-0.0807785\pi\)
\(72\) 0 0
\(73\) 0.674683i 0.0789656i 0.999220 + 0.0394828i \(0.0125710\pi\)
−0.999220 + 0.0394828i \(0.987429\pi\)
\(74\) 0 0
\(75\) −5.07289 −0.585767
\(76\) 0 0
\(77\) 13.5846i 1.54811i
\(78\) 0 0
\(79\) 1.43576i 0.161536i 0.996733 + 0.0807680i \(0.0257373\pi\)
−0.996733 + 0.0807680i \(0.974263\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 16.1494i 1.77262i 0.463088 + 0.886312i \(0.346741\pi\)
−0.463088 + 0.886312i \(0.653259\pi\)
\(84\) 0 0
\(85\) 13.0102 + 1.40482i 1.41116 + 0.152374i
\(86\) 0 0
\(87\) −3.32236 −0.356195
\(88\) 0 0
\(89\) 9.77068 1.03569 0.517845 0.855475i \(-0.326734\pi\)
0.517845 + 0.855475i \(0.326734\pi\)
\(90\) 0 0
\(91\) 9.09761 0.953688
\(92\) 0 0
\(93\) 1.30617i 0.135444i
\(94\) 0 0
\(95\) 21.8143i 2.23810i
\(96\) 0 0
\(97\) 0.954796i 0.0969449i 0.998825 + 0.0484724i \(0.0154353\pi\)
−0.998825 + 0.0484724i \(0.984565\pi\)
\(98\) 0 0
\(99\) 5.40062 0.542783
\(100\) 0 0
\(101\) 11.7795i 1.17210i 0.810275 + 0.586050i \(0.199318\pi\)
−0.810275 + 0.586050i \(0.800682\pi\)
\(102\) 0 0
\(103\) 3.63788 0.358451 0.179225 0.983808i \(-0.442641\pi\)
0.179225 + 0.983808i \(0.442641\pi\)
\(104\) 0 0
\(105\) 7.98329i 0.779089i
\(106\) 0 0
\(107\) 2.78476 0.269213 0.134606 0.990899i \(-0.457023\pi\)
0.134606 + 0.990899i \(0.457023\pi\)
\(108\) 0 0
\(109\) −14.7517 −1.41296 −0.706479 0.707734i \(-0.749718\pi\)
−0.706479 + 0.707734i \(0.749718\pi\)
\(110\) 0 0
\(111\) 6.65467 0.631633
\(112\) 0 0
\(113\) 7.57157i 0.712274i 0.934434 + 0.356137i \(0.115906\pi\)
−0.934434 + 0.356137i \(0.884094\pi\)
\(114\) 0 0
\(115\) 23.9538i 2.23370i
\(116\) 0 0
\(117\) 3.61678i 0.334372i
\(118\) 0 0
\(119\) 1.11339 10.3113i 0.102064 0.945232i
\(120\) 0 0
\(121\) 18.1667 1.65152
\(122\) 0 0
\(123\) 5.04206i 0.454627i
\(124\) 0 0
\(125\) −0.231351 −0.0206927
\(126\) 0 0
\(127\) 8.80507 0.781324 0.390662 0.920534i \(-0.372246\pi\)
0.390662 + 0.920534i \(0.372246\pi\)
\(128\) 0 0
\(129\) 5.85844i 0.515807i
\(130\) 0 0
\(131\) −21.0088 −1.83555 −0.917773 0.397106i \(-0.870014\pi\)
−0.917773 + 0.397106i \(0.870014\pi\)
\(132\) 0 0
\(133\) 17.2890 1.49914
\(134\) 0 0
\(135\) 3.17378 0.273156
\(136\) 0 0
\(137\) −15.9533 −1.36298 −0.681490 0.731828i \(-0.738668\pi\)
−0.681490 + 0.731828i \(0.738668\pi\)
\(138\) 0 0
\(139\) −6.61325 −0.560929 −0.280464 0.959864i \(-0.590488\pi\)
−0.280464 + 0.959864i \(0.590488\pi\)
\(140\) 0 0
\(141\) −8.02838 −0.676112
\(142\) 0 0
\(143\) 19.5329i 1.63342i
\(144\) 0 0
\(145\) −10.5445 −0.875670
\(146\) 0 0
\(147\) −0.672834 −0.0554944
\(148\) 0 0
\(149\) 15.3325i 1.25609i −0.778178 0.628044i \(-0.783856\pi\)
0.778178 0.628044i \(-0.216144\pi\)
\(150\) 0 0
\(151\) 1.10540 0.0899565 0.0449782 0.998988i \(-0.485678\pi\)
0.0449782 + 0.998988i \(0.485678\pi\)
\(152\) 0 0
\(153\) −4.09928 0.442631i −0.331407 0.0357846i
\(154\) 0 0
\(155\) 4.14551i 0.332975i
\(156\) 0 0
\(157\) 17.6004i 1.40467i −0.711849 0.702333i \(-0.752142\pi\)
0.711849 0.702333i \(-0.247858\pi\)
\(158\) 0 0
\(159\) 7.67778i 0.608888i
\(160\) 0 0
\(161\) −18.9846 −1.49620
\(162\) 0 0
\(163\) 0.345904 0.0270933 0.0135467 0.999908i \(-0.495688\pi\)
0.0135467 + 0.999908i \(0.495688\pi\)
\(164\) 0 0
\(165\) 17.1404 1.33438
\(166\) 0 0
\(167\) 20.7946i 1.60913i 0.593861 + 0.804567i \(0.297603\pi\)
−0.593861 + 0.804567i \(0.702397\pi\)
\(168\) 0 0
\(169\) −0.0811240 −0.00624031
\(170\) 0 0
\(171\) 6.87329i 0.525614i
\(172\) 0 0
\(173\) 8.28576 0.629954 0.314977 0.949099i \(-0.398003\pi\)
0.314977 + 0.949099i \(0.398003\pi\)
\(174\) 0 0
\(175\) 12.7603i 0.964587i
\(176\) 0 0
\(177\) 4.23300i 0.318172i
\(178\) 0 0
\(179\) 17.2101i 1.28634i 0.765722 + 0.643172i \(0.222382\pi\)
−0.765722 + 0.643172i \(0.777618\pi\)
\(180\) 0 0
\(181\) 1.76280 0.131028 0.0655141 0.997852i \(-0.479131\pi\)
0.0655141 + 0.997852i \(0.479131\pi\)
\(182\) 0 0
\(183\) 3.88181 0.286952
\(184\) 0 0
\(185\) 21.1205 1.55281
\(186\) 0 0
\(187\) −22.1386 2.39048i −1.61894 0.174809i
\(188\) 0 0
\(189\) 2.51539i 0.182967i
\(190\) 0 0
\(191\) −4.73825 −0.342848 −0.171424 0.985197i \(-0.554837\pi\)
−0.171424 + 0.985197i \(0.554837\pi\)
\(192\) 0 0
\(193\) 20.9493i 1.50796i 0.656897 + 0.753980i \(0.271869\pi\)
−0.656897 + 0.753980i \(0.728131\pi\)
\(194\) 0 0
\(195\) 11.4789i 0.822020i
\(196\) 0 0
\(197\) 8.35170 0.595034 0.297517 0.954716i \(-0.403841\pi\)
0.297517 + 0.954716i \(0.403841\pi\)
\(198\) 0 0
\(199\) 12.3310i 0.874121i 0.899432 + 0.437060i \(0.143980\pi\)
−0.899432 + 0.437060i \(0.856020\pi\)
\(200\) 0 0
\(201\) 10.8844i 0.767724i
\(202\) 0 0
\(203\) 8.35703i 0.586548i
\(204\) 0 0
\(205\) 16.0024i 1.11766i
\(206\) 0 0
\(207\) 7.54740i 0.524581i
\(208\) 0 0
\(209\) 37.1200i 2.56765i
\(210\) 0 0
\(211\) 16.0368 1.10402 0.552010 0.833837i \(-0.313861\pi\)
0.552010 + 0.833837i \(0.313861\pi\)
\(212\) 0 0
\(213\) 4.23091i 0.289897i
\(214\) 0 0
\(215\) 18.5934i 1.26806i
\(216\) 0 0
\(217\) 3.28553 0.223036
\(218\) 0 0
\(219\) 0.674683i 0.0455908i
\(220\) 0 0
\(221\) −1.60090 + 14.8262i −0.107688 + 0.997318i
\(222\) 0 0
\(223\) −10.0104 −0.670349 −0.335174 0.942156i \(-0.608795\pi\)
−0.335174 + 0.942156i \(0.608795\pi\)
\(224\) 0 0
\(225\) 5.07289 0.338193
\(226\) 0 0
\(227\) −14.0466 −0.932305 −0.466152 0.884704i \(-0.654360\pi\)
−0.466152 + 0.884704i \(0.654360\pi\)
\(228\) 0 0
\(229\) 3.35868i 0.221948i −0.993823 0.110974i \(-0.964603\pi\)
0.993823 0.110974i \(-0.0353970\pi\)
\(230\) 0 0
\(231\) 13.5846i 0.893804i
\(232\) 0 0
\(233\) 15.1152i 0.990230i −0.868827 0.495115i \(-0.835126\pi\)
0.868827 0.495115i \(-0.164874\pi\)
\(234\) 0 0
\(235\) −25.4803 −1.66215
\(236\) 0 0
\(237\) 1.43576i 0.0932628i
\(238\) 0 0
\(239\) −11.3025 −0.731101 −0.365550 0.930792i \(-0.619119\pi\)
−0.365550 + 0.930792i \(0.619119\pi\)
\(240\) 0 0
\(241\) 23.8864i 1.53866i 0.638851 + 0.769330i \(0.279410\pi\)
−0.638851 + 0.769330i \(0.720590\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −2.13543 −0.136427
\(246\) 0 0
\(247\) −24.8592 −1.58175
\(248\) 0 0
\(249\) 16.1494i 1.02343i
\(250\) 0 0
\(251\) 7.16691i 0.452371i 0.974084 + 0.226186i \(0.0726256\pi\)
−0.974084 + 0.226186i \(0.927374\pi\)
\(252\) 0 0
\(253\) 40.7606i 2.56260i
\(254\) 0 0
\(255\) −13.0102 1.40482i −0.814731 0.0879729i
\(256\) 0 0
\(257\) −5.46601 −0.340960 −0.170480 0.985361i \(-0.554532\pi\)
−0.170480 + 0.985361i \(0.554532\pi\)
\(258\) 0 0
\(259\) 16.7391i 1.04011i
\(260\) 0 0
\(261\) 3.32236 0.205649
\(262\) 0 0
\(263\) 15.2442 0.939997 0.469999 0.882667i \(-0.344254\pi\)
0.469999 + 0.882667i \(0.344254\pi\)
\(264\) 0 0
\(265\) 24.3676i 1.49689i
\(266\) 0 0
\(267\) −9.77068 −0.597956
\(268\) 0 0
\(269\) −6.61819 −0.403518 −0.201759 0.979435i \(-0.564666\pi\)
−0.201759 + 0.979435i \(0.564666\pi\)
\(270\) 0 0
\(271\) 11.5920 0.704166 0.352083 0.935969i \(-0.385473\pi\)
0.352083 + 0.935969i \(0.385473\pi\)
\(272\) 0 0
\(273\) −9.09761 −0.550612
\(274\) 0 0
\(275\) 27.3968 1.65209
\(276\) 0 0
\(277\) 16.6679 1.00148 0.500738 0.865599i \(-0.333062\pi\)
0.500738 + 0.865599i \(0.333062\pi\)
\(278\) 0 0
\(279\) 1.30617i 0.0781985i
\(280\) 0 0
\(281\) −6.51175 −0.388458 −0.194229 0.980956i \(-0.562221\pi\)
−0.194229 + 0.980956i \(0.562221\pi\)
\(282\) 0 0
\(283\) 21.2924 1.26570 0.632850 0.774275i \(-0.281885\pi\)
0.632850 + 0.774275i \(0.281885\pi\)
\(284\) 0 0
\(285\) 21.8143i 1.29217i
\(286\) 0 0
\(287\) −12.6827 −0.748637
\(288\) 0 0
\(289\) 16.6082 + 3.62894i 0.976950 + 0.213467i
\(290\) 0 0
\(291\) 0.954796i 0.0559712i
\(292\) 0 0
\(293\) 6.20078i 0.362253i 0.983460 + 0.181127i \(0.0579744\pi\)
−0.983460 + 0.181127i \(0.942026\pi\)
\(294\) 0 0
\(295\) 13.4346i 0.782194i
\(296\) 0 0
\(297\) −5.40062 −0.313376
\(298\) 0 0
\(299\) 27.2973 1.57864
\(300\) 0 0
\(301\) −14.7362 −0.849382
\(302\) 0 0
\(303\) 11.7795i 0.676712i
\(304\) 0 0
\(305\) 12.3200 0.705442
\(306\) 0 0
\(307\) 3.96275i 0.226166i −0.993586 0.113083i \(-0.963927\pi\)
0.993586 0.113083i \(-0.0360726\pi\)
\(308\) 0 0
\(309\) −3.63788 −0.206952
\(310\) 0 0
\(311\) 6.26994i 0.355535i −0.984072 0.177768i \(-0.943112\pi\)
0.984072 0.177768i \(-0.0568876\pi\)
\(312\) 0 0
\(313\) 10.7509i 0.607675i −0.952724 0.303838i \(-0.901732\pi\)
0.952724 0.303838i \(-0.0982681\pi\)
\(314\) 0 0
\(315\) 7.98329i 0.449807i
\(316\) 0 0
\(317\) −17.0890 −0.959815 −0.479908 0.877319i \(-0.659330\pi\)
−0.479908 + 0.877319i \(0.659330\pi\)
\(318\) 0 0
\(319\) 17.9428 1.00461
\(320\) 0 0
\(321\) −2.78476 −0.155430
\(322\) 0 0
\(323\) −3.04233 + 28.1755i −0.169280 + 1.56773i
\(324\) 0 0
\(325\) 18.3476i 1.01774i
\(326\) 0 0
\(327\) 14.7517 0.815772
\(328\) 0 0
\(329\) 20.1945i 1.11336i
\(330\) 0 0
\(331\) 7.05539i 0.387799i −0.981021 0.193900i \(-0.937886\pi\)
0.981021 0.193900i \(-0.0621136\pi\)
\(332\) 0 0
\(333\) −6.65467 −0.364673
\(334\) 0 0
\(335\) 34.5446i 1.88737i
\(336\) 0 0
\(337\) 19.8274i 1.08007i −0.841643 0.540035i \(-0.818411\pi\)
0.841643 0.540035i \(-0.181589\pi\)
\(338\) 0 0
\(339\) 7.57157i 0.411231i
\(340\) 0 0
\(341\) 7.05414i 0.382003i
\(342\) 0 0
\(343\) 19.3001i 1.04211i
\(344\) 0 0
\(345\) 23.9538i 1.28963i
\(346\) 0 0
\(347\) 24.3591 1.30767 0.653833 0.756639i \(-0.273160\pi\)
0.653833 + 0.756639i \(0.273160\pi\)
\(348\) 0 0
\(349\) 1.20575i 0.0645421i 0.999479 + 0.0322710i \(0.0102740\pi\)
−0.999479 + 0.0322710i \(0.989726\pi\)
\(350\) 0 0
\(351\) 3.61678i 0.193050i
\(352\) 0 0
\(353\) 11.4575 0.609820 0.304910 0.952381i \(-0.401374\pi\)
0.304910 + 0.952381i \(0.401374\pi\)
\(354\) 0 0
\(355\) 13.4280i 0.712683i
\(356\) 0 0
\(357\) −1.11339 + 10.3113i −0.0589268 + 0.545730i
\(358\) 0 0
\(359\) 31.0234 1.63735 0.818677 0.574254i \(-0.194708\pi\)
0.818677 + 0.574254i \(0.194708\pi\)
\(360\) 0 0
\(361\) −28.2421 −1.48643
\(362\) 0 0
\(363\) −18.1667 −0.953504
\(364\) 0 0
\(365\) 2.14130i 0.112081i
\(366\) 0 0
\(367\) 9.00308i 0.469957i −0.972001 0.234978i \(-0.924498\pi\)
0.972001 0.234978i \(-0.0755020\pi\)
\(368\) 0 0
\(369\) 5.04206i 0.262479i
\(370\) 0 0
\(371\) −19.3126 −1.00266
\(372\) 0 0
\(373\) 23.7413i 1.22928i −0.788809 0.614638i \(-0.789302\pi\)
0.788809 0.614638i \(-0.210698\pi\)
\(374\) 0 0
\(375\) 0.231351 0.0119469
\(376\) 0 0
\(377\) 12.0163i 0.618869i
\(378\) 0 0
\(379\) 10.7431 0.551835 0.275917 0.961181i \(-0.411018\pi\)
0.275917 + 0.961181i \(0.411018\pi\)
\(380\) 0 0
\(381\) −8.80507 −0.451098
\(382\) 0 0
\(383\) 13.2678 0.677952 0.338976 0.940795i \(-0.389919\pi\)
0.338976 + 0.940795i \(0.389919\pi\)
\(384\) 0 0
\(385\) 43.1147i 2.19733i
\(386\) 0 0
\(387\) 5.85844i 0.297801i
\(388\) 0 0
\(389\) 32.5854i 1.65214i 0.563565 + 0.826072i \(0.309429\pi\)
−0.563565 + 0.826072i \(0.690571\pi\)
\(390\) 0 0
\(391\) 3.34071 30.9389i 0.168947 1.56465i
\(392\) 0 0
\(393\) 21.0088 1.05975
\(394\) 0 0
\(395\) 4.55680i 0.229277i
\(396\) 0 0
\(397\) −13.2519 −0.665092 −0.332546 0.943087i \(-0.607908\pi\)
−0.332546 + 0.943087i \(0.607908\pi\)
\(398\) 0 0
\(399\) −17.2890 −0.865531
\(400\) 0 0
\(401\) 12.2827i 0.613366i 0.951812 + 0.306683i \(0.0992192\pi\)
−0.951812 + 0.306683i \(0.900781\pi\)
\(402\) 0 0
\(403\) −4.72415 −0.235326
\(404\) 0 0
\(405\) −3.17378 −0.157707
\(406\) 0 0
\(407\) −35.9393 −1.78145
\(408\) 0 0
\(409\) −16.8564 −0.833493 −0.416747 0.909023i \(-0.636830\pi\)
−0.416747 + 0.909023i \(0.636830\pi\)
\(410\) 0 0
\(411\) 15.9533 0.786916
\(412\) 0 0
\(413\) −10.6476 −0.523936
\(414\) 0 0
\(415\) 51.2546i 2.51599i
\(416\) 0 0
\(417\) 6.61325 0.323852
\(418\) 0 0
\(419\) −7.38718 −0.360887 −0.180444 0.983585i \(-0.557753\pi\)
−0.180444 + 0.983585i \(0.557753\pi\)
\(420\) 0 0
\(421\) 20.6976i 1.00874i 0.863489 + 0.504369i \(0.168275\pi\)
−0.863489 + 0.504369i \(0.831725\pi\)
\(422\) 0 0
\(423\) 8.02838 0.390353
\(424\) 0 0
\(425\) −20.7952 2.24542i −1.00872 0.108919i
\(426\) 0 0
\(427\) 9.76425i 0.472525i
\(428\) 0 0
\(429\) 19.5329i 0.943056i
\(430\) 0 0
\(431\) 13.1852i 0.635107i 0.948240 + 0.317554i \(0.102861\pi\)
−0.948240 + 0.317554i \(0.897139\pi\)
\(432\) 0 0
\(433\) 14.7426 0.708485 0.354243 0.935154i \(-0.384739\pi\)
0.354243 + 0.935154i \(0.384739\pi\)
\(434\) 0 0
\(435\) 10.5445 0.505568
\(436\) 0 0
\(437\) 51.8755 2.48154
\(438\) 0 0
\(439\) 6.15820i 0.293915i −0.989143 0.146958i \(-0.953052\pi\)
0.989143 0.146958i \(-0.0469481\pi\)
\(440\) 0 0
\(441\) 0.672834 0.0320397
\(442\) 0 0
\(443\) 2.64879i 0.125848i 0.998018 + 0.0629239i \(0.0200425\pi\)
−0.998018 + 0.0629239i \(0.979957\pi\)
\(444\) 0 0
\(445\) −31.0100 −1.47002
\(446\) 0 0
\(447\) 15.3325i 0.725203i
\(448\) 0 0
\(449\) 33.2045i 1.56702i −0.621381 0.783509i \(-0.713428\pi\)
0.621381 0.783509i \(-0.286572\pi\)
\(450\) 0 0
\(451\) 27.2302i 1.28222i
\(452\) 0 0
\(453\) −1.10540 −0.0519364
\(454\) 0 0
\(455\) −28.8738 −1.35363
\(456\) 0 0
\(457\) −21.2316 −0.993171 −0.496585 0.867988i \(-0.665413\pi\)
−0.496585 + 0.867988i \(0.665413\pi\)
\(458\) 0 0
\(459\) 4.09928 + 0.442631i 0.191338 + 0.0206603i
\(460\) 0 0
\(461\) 35.0837i 1.63401i −0.576631 0.817004i \(-0.695633\pi\)
0.576631 0.817004i \(-0.304367\pi\)
\(462\) 0 0
\(463\) 22.4625 1.04392 0.521960 0.852970i \(-0.325201\pi\)
0.521960 + 0.852970i \(0.325201\pi\)
\(464\) 0 0
\(465\) 4.14551i 0.192243i
\(466\) 0 0
\(467\) 14.3658i 0.664772i −0.943143 0.332386i \(-0.892146\pi\)
0.943143 0.332386i \(-0.107854\pi\)
\(468\) 0 0
\(469\) −27.3784 −1.26422
\(470\) 0 0
\(471\) 17.6004i 0.810984i
\(472\) 0 0
\(473\) 31.6392i 1.45477i
\(474\) 0 0
\(475\) 34.8675i 1.59983i
\(476\) 0 0
\(477\) 7.67778i 0.351541i
\(478\) 0 0
\(479\) 7.01618i 0.320577i −0.987070 0.160289i \(-0.948758\pi\)
0.987070 0.160289i \(-0.0512425\pi\)
\(480\) 0 0
\(481\) 24.0685i 1.09743i
\(482\) 0 0
\(483\) 18.9846 0.863830
\(484\) 0 0
\(485\) 3.03032i 0.137600i
\(486\) 0 0
\(487\) 24.5769i 1.11368i −0.830619 0.556842i \(-0.812013\pi\)
0.830619 0.556842i \(-0.187987\pi\)
\(488\) 0 0
\(489\) −0.345904 −0.0156423
\(490\) 0 0
\(491\) 7.60956i 0.343415i 0.985148 + 0.171707i \(0.0549283\pi\)
−0.985148 + 0.171707i \(0.945072\pi\)
\(492\) 0 0
\(493\) −13.6193 1.47058i −0.613382 0.0662317i
\(494\) 0 0
\(495\) −17.1404 −0.770403
\(496\) 0 0
\(497\) 10.6424 0.477375
\(498\) 0 0
\(499\) 16.2432 0.727144 0.363572 0.931566i \(-0.381557\pi\)
0.363572 + 0.931566i \(0.381557\pi\)
\(500\) 0 0
\(501\) 20.7946i 0.929034i
\(502\) 0 0
\(503\) 26.3137i 1.17327i 0.809851 + 0.586636i \(0.199548\pi\)
−0.809851 + 0.586636i \(0.800452\pi\)
\(504\) 0 0
\(505\) 37.3854i 1.66363i
\(506\) 0 0
\(507\) 0.0811240 0.00360284
\(508\) 0 0
\(509\) 7.93657i 0.351782i 0.984410 + 0.175891i \(0.0562806\pi\)
−0.984410 + 0.175891i \(0.943719\pi\)
\(510\) 0 0
\(511\) −1.69709 −0.0750747
\(512\) 0 0
\(513\) 6.87329i 0.303463i
\(514\) 0 0
\(515\) −11.5458 −0.508770
\(516\) 0 0
\(517\) 43.3582 1.90689
\(518\) 0 0
\(519\) −8.28576 −0.363704
\(520\) 0 0
\(521\) 9.50069i 0.416233i 0.978104 + 0.208116i \(0.0667333\pi\)
−0.978104 + 0.208116i \(0.933267\pi\)
\(522\) 0 0
\(523\) 3.17435i 0.138805i −0.997589 0.0694024i \(-0.977891\pi\)
0.997589 0.0694024i \(-0.0221092\pi\)
\(524\) 0 0
\(525\) 12.7603i 0.556905i
\(526\) 0 0
\(527\) −0.578153 + 5.35437i −0.0251847 + 0.233240i
\(528\) 0 0
\(529\) −33.9632 −1.47666
\(530\) 0 0
\(531\) 4.23300i 0.183697i
\(532\) 0 0
\(533\) 18.2360 0.789890
\(534\) 0 0
\(535\) −8.83821 −0.382109
\(536\) 0 0
\(537\) 17.2101i 0.742671i
\(538\) 0 0
\(539\) 3.63372 0.156515
\(540\) 0 0
\(541\) 19.5892 0.842205 0.421103 0.907013i \(-0.361643\pi\)
0.421103 + 0.907013i \(0.361643\pi\)
\(542\) 0 0
\(543\) −1.76280 −0.0756491
\(544\) 0 0
\(545\) 46.8187 2.00549
\(546\) 0 0
\(547\) 17.5753 0.751467 0.375734 0.926728i \(-0.377391\pi\)
0.375734 + 0.926728i \(0.377391\pi\)
\(548\) 0 0
\(549\) −3.88181 −0.165672
\(550\) 0 0
\(551\) 22.8356i 0.972828i
\(552\) 0 0
\(553\) −3.61150 −0.153576
\(554\) 0 0
\(555\) −21.1205 −0.896514
\(556\) 0 0
\(557\) 30.3013i 1.28391i 0.766744 + 0.641953i \(0.221875\pi\)
−0.766744 + 0.641953i \(0.778125\pi\)
\(558\) 0 0
\(559\) 21.1887 0.896186
\(560\) 0 0
\(561\) 22.1386 + 2.39048i 0.934694 + 0.100926i
\(562\) 0 0
\(563\) 2.46670i 0.103959i 0.998648 + 0.0519794i \(0.0165530\pi\)
−0.998648 + 0.0519794i \(0.983447\pi\)
\(564\) 0 0
\(565\) 24.0305i 1.01097i
\(566\) 0 0
\(567\) 2.51539i 0.105636i
\(568\) 0 0
\(569\) 21.6017 0.905590 0.452795 0.891615i \(-0.350427\pi\)
0.452795 + 0.891615i \(0.350427\pi\)
\(570\) 0 0
\(571\) 10.9931 0.460046 0.230023 0.973185i \(-0.426120\pi\)
0.230023 + 0.973185i \(0.426120\pi\)
\(572\) 0 0
\(573\) 4.73825 0.197943
\(574\) 0 0
\(575\) 38.2872i 1.59668i
\(576\) 0 0
\(577\) 10.7397 0.447100 0.223550 0.974692i \(-0.428235\pi\)
0.223550 + 0.974692i \(0.428235\pi\)
\(578\) 0 0
\(579\) 20.9493i 0.870621i
\(580\) 0 0
\(581\) −40.6219 −1.68528
\(582\) 0 0
\(583\) 41.4648i 1.71730i
\(584\) 0 0
\(585\) 11.4789i 0.474593i
\(586\) 0 0
\(587\) 35.1504i 1.45081i −0.688321 0.725406i \(-0.741652\pi\)
0.688321 0.725406i \(-0.258348\pi\)
\(588\) 0 0
\(589\) −8.97771 −0.369920
\(590\) 0 0
\(591\) −8.35170 −0.343543
\(592\) 0 0
\(593\) −30.3326 −1.24561 −0.622805 0.782377i \(-0.714007\pi\)
−0.622805 + 0.782377i \(0.714007\pi\)
\(594\) 0 0
\(595\) −3.53365 + 32.7257i −0.144866 + 1.34162i
\(596\) 0 0
\(597\) 12.3310i 0.504674i
\(598\) 0 0
\(599\) −31.3182 −1.27963 −0.639814 0.768530i \(-0.720988\pi\)
−0.639814 + 0.768530i \(0.720988\pi\)
\(600\) 0 0
\(601\) 30.7936i 1.25610i 0.778174 + 0.628048i \(0.216146\pi\)
−0.778174 + 0.628048i \(0.783854\pi\)
\(602\) 0 0
\(603\) 10.8844i 0.443246i
\(604\) 0 0
\(605\) −57.6571 −2.34410
\(606\) 0 0
\(607\) 2.10908i 0.0856050i −0.999084 0.0428025i \(-0.986371\pi\)
0.999084 0.0428025i \(-0.0136286\pi\)
\(608\) 0 0
\(609\) 8.35703i 0.338644i
\(610\) 0 0
\(611\) 29.0369i 1.17471i
\(612\) 0 0
\(613\) 18.9528i 0.765497i 0.923853 + 0.382749i \(0.125022\pi\)
−0.923853 + 0.382749i \(0.874978\pi\)
\(614\) 0 0
\(615\) 16.0024i 0.645279i
\(616\) 0 0
\(617\) 7.76650i 0.312668i −0.987704 0.156334i \(-0.950032\pi\)
0.987704 0.156334i \(-0.0499676\pi\)
\(618\) 0 0
\(619\) −17.1983 −0.691258 −0.345629 0.938371i \(-0.612334\pi\)
−0.345629 + 0.938371i \(0.612334\pi\)
\(620\) 0 0
\(621\) 7.54740i 0.302867i
\(622\) 0 0
\(623\) 24.5770i 0.984658i
\(624\) 0 0
\(625\) −24.6302 −0.985209
\(626\) 0 0
\(627\) 37.1200i 1.48243i
\(628\) 0 0
\(629\) 27.2793 + 2.94556i 1.08770 + 0.117447i
\(630\) 0 0
\(631\) 0.102276 0.00407152 0.00203576 0.999998i \(-0.499352\pi\)
0.00203576 + 0.999998i \(0.499352\pi\)
\(632\) 0 0
\(633\) −16.0368 −0.637407
\(634\) 0 0
\(635\) −27.9454 −1.10898
\(636\) 0 0
\(637\) 2.43349i 0.0964185i
\(638\) 0 0
\(639\) 4.23091i 0.167372i
\(640\) 0 0
\(641\) 47.2480i 1.86618i −0.359639 0.933091i \(-0.617100\pi\)
0.359639 0.933091i \(-0.382900\pi\)
\(642\) 0 0
\(643\) −22.6820 −0.894491 −0.447245 0.894411i \(-0.647595\pi\)
−0.447245 + 0.894411i \(0.647595\pi\)
\(644\) 0 0
\(645\) 18.5934i 0.732115i
\(646\) 0 0
\(647\) 42.0519 1.65323 0.826615 0.562768i \(-0.190264\pi\)
0.826615 + 0.562768i \(0.190264\pi\)
\(648\) 0 0
\(649\) 22.8608i 0.897366i
\(650\) 0 0
\(651\) −3.28553 −0.128770
\(652\) 0 0
\(653\) −42.6516 −1.66909 −0.834544 0.550942i \(-0.814269\pi\)
−0.834544 + 0.550942i \(0.814269\pi\)
\(654\) 0 0
\(655\) 66.6773 2.60530
\(656\) 0 0
\(657\) 0.674683i 0.0263219i
\(658\) 0 0
\(659\) 1.41696i 0.0551970i 0.999619 + 0.0275985i \(0.00878600\pi\)
−0.999619 + 0.0275985i \(0.991214\pi\)
\(660\) 0 0
\(661\) 11.2234i 0.436541i −0.975888 0.218270i \(-0.929959\pi\)
0.975888 0.218270i \(-0.0700415\pi\)
\(662\) 0 0
\(663\) 1.60090 14.8262i 0.0621739 0.575802i
\(664\) 0 0
\(665\) −54.8714 −2.12782
\(666\) 0 0
\(667\) 25.0752i 0.970916i
\(668\) 0 0
\(669\) 10.0104 0.387026
\(670\) 0 0
\(671\) −20.9642 −0.809313
\(672\) 0 0
\(673\) 22.9936i 0.886337i −0.896438 0.443169i \(-0.853854\pi\)
0.896438 0.443169i \(-0.146146\pi\)
\(674\) 0 0
\(675\) −5.07289 −0.195256
\(676\) 0 0
\(677\) 39.4852 1.51754 0.758771 0.651358i \(-0.225800\pi\)
0.758771 + 0.651358i \(0.225800\pi\)
\(678\) 0 0
\(679\) −2.40168 −0.0921681
\(680\) 0 0
\(681\) 14.0466 0.538266
\(682\) 0 0
\(683\) 20.6340 0.789537 0.394768 0.918781i \(-0.370825\pi\)
0.394768 + 0.918781i \(0.370825\pi\)
\(684\) 0 0
\(685\) 50.6322 1.93456
\(686\) 0 0
\(687\) 3.35868i 0.128142i
\(688\) 0 0
\(689\) 27.7689 1.05791
\(690\) 0 0
\(691\) 19.5064 0.742057 0.371028 0.928622i \(-0.379005\pi\)
0.371028 + 0.928622i \(0.379005\pi\)
\(692\) 0 0
\(693\) 13.5846i 0.516038i
\(694\) 0 0
\(695\) 20.9890 0.796159
\(696\) 0 0
\(697\) 2.23177 20.6688i 0.0845344 0.782886i
\(698\) 0 0
\(699\) 15.1152i 0.571710i
\(700\) 0 0
\(701\) 22.6742i 0.856392i 0.903686 + 0.428196i \(0.140851\pi\)
−0.903686 + 0.428196i \(0.859149\pi\)
\(702\) 0 0
\(703\) 45.7394i 1.72510i
\(704\) 0 0
\(705\) 25.4803 0.959645
\(706\) 0 0
\(707\) −29.6299 −1.11435
\(708\) 0 0
\(709\) 2.38593 0.0896056 0.0448028 0.998996i \(-0.485734\pi\)
0.0448028 + 0.998996i \(0.485734\pi\)
\(710\) 0 0
\(711\) 1.43576i 0.0538453i
\(712\) 0 0
\(713\) 9.85821 0.369193
\(714\) 0 0
\(715\) 61.9931i 2.31841i
\(716\) 0 0
\(717\) 11.3025 0.422101
\(718\) 0 0
\(719\) 29.3055i 1.09291i −0.837489 0.546455i \(-0.815977\pi\)
0.837489 0.546455i \(-0.184023\pi\)
\(720\) 0 0
\(721\) 9.15067i 0.340789i
\(722\) 0 0
\(723\) 23.8864i 0.888346i
\(724\) 0 0
\(725\) 16.8540 0.625942
\(726\) 0 0
\(727\) −21.2949 −0.789785 −0.394892 0.918727i \(-0.629218\pi\)
−0.394892 + 0.918727i \(0.629218\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 2.59313 24.0154i 0.0959103 0.888240i
\(732\) 0 0
\(733\) 34.3060i 1.26712i 0.773693 + 0.633561i \(0.218407\pi\)
−0.773693 + 0.633561i \(0.781593\pi\)
\(734\) 0 0
\(735\) 2.13543 0.0787664
\(736\) 0 0
\(737\) 58.7823i 2.16527i
\(738\) 0 0
\(739\) 35.2799i 1.29779i 0.760877 + 0.648896i \(0.224769\pi\)
−0.760877 + 0.648896i \(0.775231\pi\)
\(740\) 0 0
\(741\) 24.8592 0.913225
\(742\) 0 0
\(743\) 19.0184i 0.697719i −0.937175 0.348859i \(-0.886569\pi\)
0.937175 0.348859i \(-0.113431\pi\)
\(744\) 0 0
\(745\) 48.6620i 1.78284i
\(746\) 0 0
\(747\) 16.1494i 0.590875i
\(748\) 0 0
\(749\) 7.00474i 0.255948i
\(750\) 0 0
\(751\) 38.5164i 1.40548i 0.711446 + 0.702741i \(0.248041\pi\)
−0.711446 + 0.702741i \(0.751959\pi\)
\(752\) 0 0
\(753\) 7.16691i 0.261177i
\(754\) 0 0
\(755\) −3.50831 −0.127681
\(756\) 0 0
\(757\) 13.2396i 0.481200i 0.970624 + 0.240600i \(0.0773442\pi\)
−0.970624 + 0.240600i \(0.922656\pi\)
\(758\) 0 0
\(759\) 40.7606i 1.47952i
\(760\) 0 0
\(761\) 23.2876 0.844173 0.422087 0.906556i \(-0.361298\pi\)
0.422087 + 0.906556i \(0.361298\pi\)
\(762\) 0 0
\(763\) 37.1063i 1.34334i
\(764\) 0 0
\(765\) 13.0102 + 1.40482i 0.470385 + 0.0507912i
\(766\) 0 0
\(767\) 15.3098 0.552806
\(768\) 0 0
\(769\) 18.6064 0.670964 0.335482 0.942047i \(-0.391101\pi\)
0.335482 + 0.942047i \(0.391101\pi\)
\(770\) 0 0
\(771\) 5.46601 0.196854
\(772\) 0 0
\(773\) 14.1210i 0.507898i −0.967218 0.253949i \(-0.918270\pi\)
0.967218 0.253949i \(-0.0817295\pi\)
\(774\) 0 0
\(775\) 6.62608i 0.238016i
\(776\) 0 0
\(777\) 16.7391i 0.600510i
\(778\) 0 0
\(779\) 34.6555 1.24166
\(780\) 0 0
\(781\) 22.8495i 0.817620i
\(782\) 0 0
\(783\) −3.32236 −0.118732
\(784\) 0 0
\(785\) 55.8599i 1.99372i
\(786\) 0 0
\(787\) −36.6396 −1.30606 −0.653030 0.757332i \(-0.726503\pi\)
−0.653030 + 0.757332i \(0.726503\pi\)
\(788\) 0 0
\(789\) −15.2442 −0.542708
\(790\) 0 0
\(791\) −19.0454 −0.677177
\(792\) 0 0
\(793\) 14.0397i 0.498563i
\(794\) 0 0
\(795\) 24.3676i 0.864230i
\(796\) 0 0
\(797\) 38.0109i 1.34642i −0.739453 0.673208i \(-0.764916\pi\)
0.739453 0.673208i \(-0.235084\pi\)
\(798\) 0 0
\(799\) −32.9106 3.55361i −1.16429 0.125718i
\(800\) 0 0
\(801\) 9.77068 0.345230
\(802\) 0 0
\(803\) 3.64370i 0.128584i
\(804\) 0 0
\(805\) 60.2531 2.12364
\(806\) 0 0
\(807\) 6.61819 0.232971
\(808\) 0 0
\(809\) 1.43730i 0.0505328i −0.999681 0.0252664i \(-0.991957\pi\)
0.999681 0.0252664i \(-0.00804340\pi\)
\(810\) 0 0
\(811\) −32.8607 −1.15390 −0.576948 0.816781i \(-0.695756\pi\)
−0.576948 + 0.816781i \(0.695756\pi\)
\(812\) 0 0
\(813\) −11.5920 −0.406550
\(814\) 0 0
\(815\) −1.09783 −0.0384551
\(816\) 0 0
\(817\) 40.2667 1.40875
\(818\) 0 0
\(819\) 9.09761 0.317896
\(820\) 0 0
\(821\) 20.4356 0.713207 0.356604 0.934256i \(-0.383935\pi\)
0.356604 + 0.934256i \(0.383935\pi\)
\(822\) 0 0
\(823\) 35.9374i 1.25270i 0.779543 + 0.626349i \(0.215451\pi\)
−0.779543 + 0.626349i \(0.784549\pi\)
\(824\) 0 0
\(825\) −27.3968 −0.953833
\(826\) 0 0
\(827\) −54.9541 −1.91094 −0.955470 0.295089i \(-0.904651\pi\)
−0.955470 + 0.295089i \(0.904651\pi\)
\(828\) 0 0
\(829\) 15.4841i 0.537785i 0.963170 + 0.268893i \(0.0866577\pi\)
−0.963170 + 0.268893i \(0.913342\pi\)
\(830\) 0 0
\(831\) −16.6679 −0.578203
\(832\) 0 0
\(833\) −2.75813 0.297817i −0.0955636 0.0103188i
\(834\) 0 0
\(835\) 65.9976i 2.28394i
\(836\) 0 0
\(837\) 1.30617i 0.0451479i
\(838\) 0 0
\(839\) 23.2368i 0.802224i 0.916029 + 0.401112i \(0.131376\pi\)
−0.916029 + 0.401112i \(0.868624\pi\)
\(840\) 0 0
\(841\) −17.9619 −0.619376
\(842\) 0 0
\(843\) 6.51175 0.224276
\(844\) 0 0
\(845\) 0.257470 0.00885723
\(846\) 0 0
\(847\) 45.6962i 1.57014i
\(848\) 0 0
\(849\) −21.2924 −0.730752
\(850\) 0 0
\(851\) 50.2254i 1.72171i
\(852\) 0 0
\(853\) −34.7441 −1.18962 −0.594808 0.803868i \(-0.702772\pi\)
−0.594808 + 0.803868i \(0.702772\pi\)
\(854\) 0 0
\(855\) 21.8143i 0.746034i
\(856\) 0 0
\(857\) 40.0894i 1.36943i −0.728811 0.684715i \(-0.759927\pi\)
0.728811 0.684715i \(-0.240073\pi\)
\(858\) 0 0
\(859\) 18.2273i 0.621906i 0.950425 + 0.310953i \(0.100648\pi\)
−0.950425 + 0.310953i \(0.899352\pi\)
\(860\) 0 0
\(861\) 12.6827 0.432226
\(862\) 0 0
\(863\) −36.4069 −1.23930 −0.619652 0.784877i \(-0.712726\pi\)
−0.619652 + 0.784877i \(0.712726\pi\)
\(864\) 0 0
\(865\) −26.2972 −0.894131
\(866\) 0 0
\(867\) −16.6082 3.62894i −0.564043 0.123245i
\(868\) 0 0
\(869\) 7.75401i 0.263037i
\(870\) 0 0
\(871\) 39.3664 1.33388
\(872\) 0 0
\(873\) 0.954796i 0.0323150i
\(874\) 0 0
\(875\) 0.581938i 0.0196731i
\(876\) 0 0
\(877\) −34.0214 −1.14882 −0.574410 0.818568i \(-0.694768\pi\)
−0.574410 + 0.818568i \(0.694768\pi\)
\(878\) 0 0
\(879\) 6.20078i 0.209147i
\(880\) 0 0
\(881\) 56.8188i 1.91427i 0.289637 + 0.957137i \(0.406466\pi\)
−0.289637 + 0.957137i \(0.593534\pi\)
\(882\) 0 0
\(883\) 25.0090i 0.841619i −0.907149 0.420810i \(-0.861746\pi\)
0.907149 0.420810i \(-0.138254\pi\)
\(884\) 0 0
\(885\) 13.4346i 0.451600i
\(886\) 0 0
\(887\) 20.9573i 0.703679i 0.936060 + 0.351839i \(0.114444\pi\)
−0.936060 + 0.351839i \(0.885556\pi\)
\(888\) 0 0
\(889\) 22.1482i 0.742825i
\(890\) 0 0
\(891\) 5.40062 0.180928
\(892\) 0 0
\(893\) 55.1814i 1.84657i
\(894\) 0 0
\(895\) 54.6211i 1.82578i
\(896\) 0 0
\(897\) −27.2973 −0.911431
\(898\) 0 0
\(899\) 4.33958i 0.144733i
\(900\) 0 0
\(901\) 3.39843 31.4734i 0.113218 1.04853i
\(902\) 0 0
\(903\) 14.7362 0.490391
\(904\) 0 0
\(905\) −5.59475 −0.185976
\(906\) 0 0
\(907\) −27.8495 −0.924727 −0.462363 0.886691i \(-0.652998\pi\)
−0.462363 + 0.886691i \(0.652998\pi\)
\(908\) 0 0
\(909\) 11.7795i 0.390700i
\(910\) 0 0
\(911\) 21.9920i 0.728626i 0.931276 + 0.364313i \(0.118696\pi\)
−0.931276 + 0.364313i \(0.881304\pi\)
\(912\) 0 0
\(913\) 87.2166i 2.88645i
\(914\) 0 0
\(915\) −12.3200 −0.407287
\(916\) 0 0
\(917\) 52.8452i 1.74510i
\(918\) 0 0
\(919\) −11.9263 −0.393412 −0.196706 0.980462i \(-0.563025\pi\)
−0.196706 + 0.980462i \(0.563025\pi\)
\(920\) 0 0
\(921\) 3.96275i 0.130577i
\(922\) 0 0
\(923\) −15.3023 −0.503680
\(924\) 0 0
\(925\) −33.7584 −1.10997
\(926\) 0 0
\(927\) 3.63788 0.119484
\(928\) 0 0
\(929\) 33.2071i 1.08949i −0.838602 0.544744i \(-0.816627\pi\)
0.838602 0.544744i \(-0.183373\pi\)
\(930\) 0 0
\(931\) 4.62458i 0.151565i
\(932\) 0 0
\(933\) 6.26994i 0.205269i
\(934\) 0 0
\(935\) 70.2632 + 7.58687i 2.29785 + 0.248117i
\(936\) 0 0
\(937\) 30.7131 1.00335 0.501677 0.865055i \(-0.332717\pi\)
0.501677 + 0.865055i \(0.332717\pi\)
\(938\) 0 0
\(939\) 10.7509i 0.350842i
\(940\) 0 0
\(941\) 11.5870 0.377724 0.188862 0.982004i \(-0.439520\pi\)
0.188862 + 0.982004i \(0.439520\pi\)
\(942\) 0 0
\(943\) −38.0544 −1.23922
\(944\) 0 0
\(945\) 7.98329i 0.259696i
\(946\) 0 0
\(947\) 27.4089 0.890669 0.445334 0.895364i \(-0.353085\pi\)
0.445334 + 0.895364i \(0.353085\pi\)
\(948\) 0 0
\(949\) 2.44018 0.0792116
\(950\) 0 0
\(951\) 17.0890 0.554150
\(952\) 0 0
\(953\) −33.5870 −1.08799 −0.543994 0.839089i \(-0.683089\pi\)
−0.543994 + 0.839089i \(0.683089\pi\)
\(954\) 0 0
\(955\) 15.0382 0.486624
\(956\) 0 0
\(957\) −17.9428 −0.580009
\(958\) 0 0
\(959\) 40.1286i 1.29582i
\(960\) 0 0
\(961\) 29.2939 0.944965
\(962\) 0 0
\(963\) 2.78476 0.0897375
\(964\) 0 0
\(965\) 66.4884i 2.14034i
\(966\) 0 0
\(967\) −37.3601 −1.20142 −0.600710 0.799467i \(-0.705115\pi\)
−0.600710 + 0.799467i \(0.705115\pi\)
\(968\) 0 0
\(969\) 3.04233 28.1755i 0.0977338 0.905128i
\(970\) 0 0
\(971\) 7.46186i 0.239463i 0.992806 + 0.119731i \(0.0382033\pi\)
−0.992806 + 0.119731i \(0.961797\pi\)
\(972\) 0 0
\(973\) 16.6349i 0.533290i
\(974\) 0 0
\(975\) 18.3476i 0.587592i
\(976\) 0 0
\(977\) −31.4037 −1.00469 −0.502346 0.864666i \(-0.667530\pi\)
−0.502346 + 0.864666i \(0.667530\pi\)
\(978\) 0 0
\(979\) 52.7677 1.68646
\(980\) 0 0
\(981\) −14.7517 −0.470986
\(982\) 0 0
\(983\) 2.30014i 0.0733630i 0.999327 + 0.0366815i \(0.0116787\pi\)
−0.999327 + 0.0366815i \(0.988321\pi\)
\(984\) 0 0
\(985\) −26.5065 −0.844567
\(986\) 0 0
\(987\) 20.1945i 0.642797i
\(988\) 0 0
\(989\) −44.2160 −1.40599
\(990\) 0 0
\(991\) 18.2755i 0.580539i −0.956945 0.290269i \(-0.906255\pi\)
0.956945 0.290269i \(-0.0937450\pi\)
\(992\) 0 0
\(993\) 7.05539i 0.223896i
\(994\) 0 0
\(995\) 39.1359i 1.24069i
\(996\) 0 0
\(997\) 6.78517 0.214888 0.107444 0.994211i \(-0.465733\pi\)
0.107444 + 0.994211i \(0.465733\pi\)
\(998\) 0 0
\(999\) 6.65467 0.210544
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1632.2.l.a.1393.4 18
3.2 odd 2 4896.2.l.d.3025.16 18
4.3 odd 2 408.2.l.b.373.10 yes 18
8.3 odd 2 408.2.l.a.373.9 18
8.5 even 2 1632.2.l.b.1393.16 18
12.11 even 2 1224.2.l.d.1189.9 18
17.16 even 2 1632.2.l.b.1393.15 18
24.5 odd 2 4896.2.l.c.3025.4 18
24.11 even 2 1224.2.l.c.1189.10 18
51.50 odd 2 4896.2.l.c.3025.3 18
68.67 odd 2 408.2.l.a.373.10 yes 18
136.67 odd 2 408.2.l.b.373.9 yes 18
136.101 even 2 inner 1632.2.l.a.1393.3 18
204.203 even 2 1224.2.l.c.1189.9 18
408.101 odd 2 4896.2.l.d.3025.15 18
408.203 even 2 1224.2.l.d.1189.10 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.l.a.373.9 18 8.3 odd 2
408.2.l.a.373.10 yes 18 68.67 odd 2
408.2.l.b.373.9 yes 18 136.67 odd 2
408.2.l.b.373.10 yes 18 4.3 odd 2
1224.2.l.c.1189.9 18 204.203 even 2
1224.2.l.c.1189.10 18 24.11 even 2
1224.2.l.d.1189.9 18 12.11 even 2
1224.2.l.d.1189.10 18 408.203 even 2
1632.2.l.a.1393.3 18 136.101 even 2 inner
1632.2.l.a.1393.4 18 1.1 even 1 trivial
1632.2.l.b.1393.15 18 17.16 even 2
1632.2.l.b.1393.16 18 8.5 even 2
4896.2.l.c.3025.3 18 51.50 odd 2
4896.2.l.c.3025.4 18 24.5 odd 2
4896.2.l.d.3025.15 18 408.101 odd 2
4896.2.l.d.3025.16 18 3.2 odd 2