L(s) = 1 | + (0.951 − 0.309i)2-s + (0.809 − 0.587i)4-s + (−0.587 + 0.809i)7-s + (0.587 − 0.809i)8-s + (0.951 + 0.309i)9-s + (−0.309 − 0.951i)11-s + (−0.309 + 0.951i)14-s + (0.309 − 0.951i)16-s + 0.999·18-s + (−0.587 − 0.809i)22-s − 1.17i·23-s + (0.587 + 0.809i)25-s + 0.999i·28-s + (0.278 + 1.76i)29-s − i·32-s + ⋯ |
L(s) = 1 | + (0.951 − 0.309i)2-s + (0.809 − 0.587i)4-s + (−0.587 + 0.809i)7-s + (0.587 − 0.809i)8-s + (0.951 + 0.309i)9-s + (−0.309 − 0.951i)11-s + (−0.309 + 0.951i)14-s + (0.309 − 0.951i)16-s + 0.999·18-s + (−0.587 − 0.809i)22-s − 1.17i·23-s + (0.587 + 0.809i)25-s + 0.999i·28-s + (0.278 + 1.76i)29-s − i·32-s + ⋯ |
Λ(s)=(=(1232s/2ΓC(s)L(s)(0.875+0.482i)Λ(1−s)
Λ(s)=(=(1232s/2ΓC(s)L(s)(0.875+0.482i)Λ(1−s)
Degree: |
2 |
Conductor: |
1232
= 24⋅7⋅11
|
Sign: |
0.875+0.482i
|
Analytic conductor: |
0.614848 |
Root analytic conductor: |
0.784122 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1232(1021,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1232, ( :0), 0.875+0.482i)
|
Particular Values
L(21) |
≈ |
1.865318866 |
L(21) |
≈ |
1.865318866 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.951+0.309i)T |
| 7 | 1+(0.587−0.809i)T |
| 11 | 1+(0.309+0.951i)T |
good | 3 | 1+(−0.951−0.309i)T2 |
| 5 | 1+(−0.587−0.809i)T2 |
| 13 | 1+(−0.587+0.809i)T2 |
| 17 | 1+(0.809−0.587i)T2 |
| 19 | 1+(−0.951−0.309i)T2 |
| 23 | 1+1.17iT−T2 |
| 29 | 1+(−0.278−1.76i)T+(−0.951+0.309i)T2 |
| 31 | 1+(0.809+0.587i)T2 |
| 37 | 1+(1.95−0.309i)T+(0.951−0.309i)T2 |
| 41 | 1+(0.309−0.951i)T2 |
| 43 | 1+(0.642−0.642i)T−iT2 |
| 47 | 1+(−0.309+0.951i)T2 |
| 53 | 1+(0.809+1.58i)T+(−0.587+0.809i)T2 |
| 59 | 1+(−0.951+0.309i)T2 |
| 61 | 1+(0.587+0.809i)T2 |
| 67 | 1+(0.642+0.642i)T+iT2 |
| 71 | 1+(0.587−0.190i)T+(0.809−0.587i)T2 |
| 73 | 1+(0.309+0.951i)T2 |
| 79 | 1+(0.587−1.80i)T+(−0.809−0.587i)T2 |
| 83 | 1+(0.587+0.809i)T2 |
| 89 | 1+T2 |
| 97 | 1+(0.809+0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.13099298717208022045046884265, −9.100622778709531610999326435724, −8.260868927870746963481120896596, −6.98312431453464783214564159385, −6.52378768227714903527470193663, −5.40546674427729166205077782113, −4.86712262124318436102262148960, −3.56651769700459456030085291234, −2.87605623009912368372891417060, −1.60230024872754652635835282050,
1.75611397364996184816687780645, 3.10451404133011712318006348524, 4.09001873629358783445089346108, 4.65154950449318336660727364156, 5.80703529786564639735295238317, 6.76790173811938826154264074259, 7.24626156038322532847174475142, 7.974498391269328844655176678483, 9.282446574469930032837150449049, 10.18640728123634574609155687695