L(s) = 1 | + (0.951 − 0.309i)2-s + (0.809 − 0.587i)4-s + (−0.587 + 0.809i)7-s + (0.587 − 0.809i)8-s + (0.951 + 0.309i)9-s + (−0.309 − 0.951i)11-s + (−0.309 + 0.951i)14-s + (0.309 − 0.951i)16-s + 0.999·18-s + (−0.587 − 0.809i)22-s − 1.17i·23-s + (0.587 + 0.809i)25-s + 0.999i·28-s + (0.278 + 1.76i)29-s − i·32-s + ⋯ |
L(s) = 1 | + (0.951 − 0.309i)2-s + (0.809 − 0.587i)4-s + (−0.587 + 0.809i)7-s + (0.587 − 0.809i)8-s + (0.951 + 0.309i)9-s + (−0.309 − 0.951i)11-s + (−0.309 + 0.951i)14-s + (0.309 − 0.951i)16-s + 0.999·18-s + (−0.587 − 0.809i)22-s − 1.17i·23-s + (0.587 + 0.809i)25-s + 0.999i·28-s + (0.278 + 1.76i)29-s − i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1232 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.875 + 0.482i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1232 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.875 + 0.482i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.865318866\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.865318866\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.951 + 0.309i)T \) |
| 7 | \( 1 + (0.587 - 0.809i)T \) |
| 11 | \( 1 + (0.309 + 0.951i)T \) |
good | 3 | \( 1 + (-0.951 - 0.309i)T^{2} \) |
| 5 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
| 13 | \( 1 + (-0.587 + 0.809i)T^{2} \) |
| 17 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.951 - 0.309i)T^{2} \) |
| 23 | \( 1 + 1.17iT - T^{2} \) |
| 29 | \( 1 + (-0.278 - 1.76i)T + (-0.951 + 0.309i)T^{2} \) |
| 31 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (1.95 - 0.309i)T + (0.951 - 0.309i)T^{2} \) |
| 41 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 + (0.642 - 0.642i)T - iT^{2} \) |
| 47 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.809 + 1.58i)T + (-0.587 + 0.809i)T^{2} \) |
| 59 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 61 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 67 | \( 1 + (0.642 + 0.642i)T + iT^{2} \) |
| 71 | \( 1 + (0.587 - 0.190i)T + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (0.587 - 1.80i)T + (-0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.13099298717208022045046884265, −9.100622778709531610999326435724, −8.260868927870746963481120896596, −6.98312431453464783214564159385, −6.52378768227714903527470193663, −5.40546674427729166205077782113, −4.86712262124318436102262148960, −3.56651769700459456030085291234, −2.87605623009912368372891417060, −1.60230024872754652635835282050,
1.75611397364996184816687780645, 3.10451404133011712318006348524, 4.09001873629358783445089346108, 4.65154950449318336660727364156, 5.80703529786564639735295238317, 6.76790173811938826154264074259, 7.24626156038322532847174475142, 7.974498391269328844655176678483, 9.282446574469930032837150449049, 10.18640728123634574609155687695