Properties

Label 1232.1.cq.b
Level $1232$
Weight $1$
Character orbit 1232.cq
Analytic conductor $0.615$
Analytic rank $0$
Dimension $8$
Projective image $D_{20}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1232,1,Mod(69,1232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 10, 16]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1232.69");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1232.cq (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.614848095564\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{20}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{20} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{20} q^{2} + \zeta_{20}^{2} q^{4} - \zeta_{20}^{3} q^{7} + \zeta_{20}^{3} q^{8} - \zeta_{20}^{9} q^{9} + \zeta_{20}^{6} q^{11} - \zeta_{20}^{4} q^{14} + \zeta_{20}^{4} q^{16} + q^{18} + \zeta_{20}^{7} q^{22} + \cdots + \zeta_{20}^{5} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{4} + 2 q^{11} + 2 q^{14} - 2 q^{16} + 8 q^{18} + 2 q^{29} - 8 q^{37} - 2 q^{43} - 2 q^{44} + 2 q^{49} + 2 q^{50} - 2 q^{53} - 2 q^{56} + 2 q^{58} - 2 q^{63} + 2 q^{64} - 2 q^{67} + 2 q^{72} - 2 q^{74}+ \cdots - 10 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1232\mathbb{Z}\right)^\times\).

\(n\) \(309\) \(353\) \(463\) \(673\)
\(\chi(n)\) \(\zeta_{20}^{5}\) \(-1\) \(1\) \(\zeta_{20}^{8}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
69.1
0.587785 0.809017i
0.587785 + 0.809017i
0.951057 + 0.309017i
−0.951057 + 0.309017i
−0.587785 + 0.809017i
−0.587785 0.809017i
−0.951057 0.309017i
0.951057 0.309017i
0.587785 0.809017i 0 −0.309017 0.951057i 0 0 0.951057 + 0.309017i −0.951057 0.309017i 0.587785 + 0.809017i 0
125.1 0.587785 + 0.809017i 0 −0.309017 + 0.951057i 0 0 0.951057 0.309017i −0.951057 + 0.309017i 0.587785 0.809017i 0
181.1 0.951057 + 0.309017i 0 0.809017 + 0.587785i 0 0 −0.587785 0.809017i 0.587785 + 0.809017i 0.951057 0.309017i 0
405.1 −0.951057 + 0.309017i 0 0.809017 0.587785i 0 0 0.587785 0.809017i −0.587785 + 0.809017i −0.951057 0.309017i 0
685.1 −0.587785 + 0.809017i 0 −0.309017 0.951057i 0 0 −0.951057 0.309017i 0.951057 + 0.309017i −0.587785 0.809017i 0
741.1 −0.587785 0.809017i 0 −0.309017 + 0.951057i 0 0 −0.951057 + 0.309017i 0.951057 0.309017i −0.587785 + 0.809017i 0
797.1 −0.951057 0.309017i 0 0.809017 + 0.587785i 0 0 0.587785 + 0.809017i −0.587785 0.809017i −0.951057 + 0.309017i 0
1021.1 0.951057 0.309017i 0 0.809017 0.587785i 0 0 −0.587785 + 0.809017i 0.587785 0.809017i 0.951057 + 0.309017i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 69.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
176.w even 20 1 inner
1232.cq odd 20 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1232.1.cq.b yes 8
7.b odd 2 1 CM 1232.1.cq.b yes 8
11.c even 5 1 1232.1.cq.a 8
16.e even 4 1 1232.1.cq.a 8
77.j odd 10 1 1232.1.cq.a 8
112.l odd 4 1 1232.1.cq.a 8
176.w even 20 1 inner 1232.1.cq.b yes 8
1232.cq odd 20 1 inner 1232.1.cq.b yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1232.1.cq.a 8 11.c even 5 1
1232.1.cq.a 8 16.e even 4 1
1232.1.cq.a 8 77.j odd 10 1
1232.1.cq.a 8 112.l odd 4 1
1232.1.cq.b yes 8 1.a even 1 1 trivial
1232.1.cq.b yes 8 7.b odd 2 1 CM
1232.1.cq.b yes 8 176.w even 20 1 inner
1232.1.cq.b yes 8 1232.cq odd 20 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{29}^{8} - 2T_{29}^{7} + 2T_{29}^{6} - 4T_{29}^{4} + 10T_{29}^{3} + 13T_{29}^{2} + 4T_{29} + 1 \) acting on \(S_{1}^{\mathrm{new}}(1232, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - T^{6} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} - T^{6} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( (T^{4} + 5 T^{2} + 5)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} - 2 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} + 8 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( T^{8} + 2 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} + 2 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( T^{8} + 2 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{8} + T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( T^{8} + 5 T^{6} + \cdots + 25 \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less