Properties

Label 1232.1.cq.b.1021.1
Level $1232$
Weight $1$
Character 1232.1021
Analytic conductor $0.615$
Analytic rank $0$
Dimension $8$
Projective image $D_{20}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1232,1,Mod(69,1232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 10, 16]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1232.69");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1232.cq (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.614848095564\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{20}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{20} - \cdots)\)

Embedding invariants

Embedding label 1021.1
Root \(0.951057 - 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 1232.1021
Dual form 1232.1.cq.b.181.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.951057 - 0.309017i) q^{2} +(0.809017 - 0.587785i) q^{4} +(-0.587785 + 0.809017i) q^{7} +(0.587785 - 0.809017i) q^{8} +(0.951057 + 0.309017i) q^{9} +(-0.309017 - 0.951057i) q^{11} +(-0.309017 + 0.951057i) q^{14} +(0.309017 - 0.951057i) q^{16} +1.00000 q^{18} +(-0.587785 - 0.809017i) q^{22} -1.17557i q^{23} +(0.587785 + 0.809017i) q^{25} +1.00000i q^{28} +(0.278768 + 1.76007i) q^{29} -1.00000i q^{32} +(0.951057 - 0.309017i) q^{36} +(-1.95106 + 0.309017i) q^{37} +(-0.642040 + 0.642040i) q^{43} +(-0.809017 - 0.587785i) q^{44} +(-0.363271 - 1.11803i) q^{46} +(-0.309017 - 0.951057i) q^{49} +(0.809017 + 0.587785i) q^{50} +(-0.809017 - 1.58779i) q^{53} +(0.309017 + 0.951057i) q^{56} +(0.809017 + 1.58779i) q^{58} +(-0.809017 + 0.587785i) q^{63} +(-0.309017 - 0.951057i) q^{64} +(-0.642040 - 0.642040i) q^{67} +(-0.587785 + 0.190983i) q^{71} +(0.809017 - 0.587785i) q^{72} +(-1.76007 + 0.896802i) q^{74} +(0.951057 + 0.309017i) q^{77} +(-0.587785 + 1.80902i) q^{79} +(0.809017 + 0.587785i) q^{81} +(-0.412215 + 0.809017i) q^{86} +(-0.951057 - 0.309017i) q^{88} +(-0.690983 - 0.951057i) q^{92} +(-0.587785 - 0.809017i) q^{98} -1.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{4} + 2 q^{11} + 2 q^{14} - 2 q^{16} + 8 q^{18} + 2 q^{29} - 8 q^{37} - 2 q^{43} - 2 q^{44} + 2 q^{49} + 2 q^{50} - 2 q^{53} - 2 q^{56} + 2 q^{58} - 2 q^{63} + 2 q^{64} - 2 q^{67} + 2 q^{72} - 2 q^{74}+ \cdots - 10 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1232\mathbb{Z}\right)^\times\).

\(n\) \(309\) \(353\) \(463\) \(673\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.951057 0.309017i 0.951057 0.309017i
\(3\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(4\) 0.809017 0.587785i 0.809017 0.587785i
\(5\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(6\) 0 0
\(7\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(8\) 0.587785 0.809017i 0.587785 0.809017i
\(9\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(10\) 0 0
\(11\) −0.309017 0.951057i −0.309017 0.951057i
\(12\) 0 0
\(13\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(14\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(15\) 0 0
\(16\) 0.309017 0.951057i 0.309017 0.951057i
\(17\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(18\) 1.00000 1.00000
\(19\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −0.587785 0.809017i −0.587785 0.809017i
\(23\) 1.17557i 1.17557i −0.809017 0.587785i \(-0.800000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(24\) 0 0
\(25\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(26\) 0 0
\(27\) 0 0
\(28\) 1.00000i 1.00000i
\(29\) 0.278768 + 1.76007i 0.278768 + 1.76007i 0.587785 + 0.809017i \(0.300000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(30\) 0 0
\(31\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(32\) 1.00000i 1.00000i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0.951057 0.309017i 0.951057 0.309017i
\(37\) −1.95106 + 0.309017i −1.95106 + 0.309017i −0.951057 + 0.309017i \(0.900000\pi\)
−1.00000 \(1.00000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(42\) 0 0
\(43\) −0.642040 + 0.642040i −0.642040 + 0.642040i −0.951057 0.309017i \(-0.900000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(44\) −0.809017 0.587785i −0.809017 0.587785i
\(45\) 0 0
\(46\) −0.363271 1.11803i −0.363271 1.11803i
\(47\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(48\) 0 0
\(49\) −0.309017 0.951057i −0.309017 0.951057i
\(50\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(51\) 0 0
\(52\) 0 0
\(53\) −0.809017 1.58779i −0.809017 1.58779i −0.809017 0.587785i \(-0.800000\pi\)
1.00000i \(-0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(57\) 0 0
\(58\) 0.809017 + 1.58779i 0.809017 + 1.58779i
\(59\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(60\) 0 0
\(61\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(62\) 0 0
\(63\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(64\) −0.309017 0.951057i −0.309017 0.951057i
\(65\) 0 0
\(66\) 0 0
\(67\) −0.642040 0.642040i −0.642040 0.642040i 0.309017 0.951057i \(-0.400000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.587785 + 0.190983i −0.587785 + 0.190983i −0.587785 0.809017i \(-0.700000\pi\)
1.00000i \(0.5\pi\)
\(72\) 0.809017 0.587785i 0.809017 0.587785i
\(73\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(74\) −1.76007 + 0.896802i −1.76007 + 0.896802i
\(75\) 0 0
\(76\) 0 0
\(77\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(78\) 0 0
\(79\) −0.587785 + 1.80902i −0.587785 + 1.80902i 1.00000i \(0.5\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(80\) 0 0
\(81\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(82\) 0 0
\(83\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.412215 + 0.809017i −0.412215 + 0.809017i
\(87\) 0 0
\(88\) −0.951057 0.309017i −0.951057 0.309017i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.690983 0.951057i −0.690983 0.951057i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(98\) −0.587785 0.809017i −0.587785 0.809017i
\(99\) 1.00000i 1.00000i
\(100\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(101\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(102\) 0 0
\(103\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −1.26007 1.26007i −1.26007 1.26007i
\(107\) 0.0489435 0.309017i 0.0489435 0.309017i −0.951057 0.309017i \(-0.900000\pi\)
1.00000 \(0\)
\(108\) 0 0
\(109\) −0.221232 0.221232i −0.221232 0.221232i 0.587785 0.809017i \(-0.300000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(113\) −1.53884 + 1.11803i −1.53884 + 1.11803i −0.587785 + 0.809017i \(0.700000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.26007 + 1.26007i 1.26007 + 1.26007i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(127\) 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(128\) −0.587785 0.809017i −0.587785 0.809017i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −0.809017 0.412215i −0.809017 0.412215i
\(135\) 0 0
\(136\) 0 0
\(137\) 1.11803 0.363271i 1.11803 0.363271i 0.309017 0.951057i \(-0.400000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(138\) 0 0
\(139\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(143\) 0 0
\(144\) 0.587785 0.809017i 0.587785 0.809017i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −1.39680 + 1.39680i −1.39680 + 1.39680i
\(149\) 1.26007 + 0.642040i 1.26007 + 0.642040i 0.951057 0.309017i \(-0.100000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(150\) 0 0
\(151\) −0.690983 0.951057i −0.690983 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 1.00000 1.00000
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(158\) 1.90211i 1.90211i
\(159\) 0 0
\(160\) 0 0
\(161\) 0.951057 + 0.690983i 0.951057 + 0.690983i
\(162\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(163\) 1.76007 0.896802i 1.76007 0.896802i 0.809017 0.587785i \(-0.200000\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(168\) 0 0
\(169\) 0.587785 0.809017i 0.587785 0.809017i
\(170\) 0 0
\(171\) 0 0
\(172\) −0.142040 + 0.896802i −0.142040 + 0.896802i
\(173\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(174\) 0 0
\(175\) −1.00000 −1.00000
\(176\) −1.00000 −1.00000
\(177\) 0 0
\(178\) 0 0
\(179\) −0.309017 0.0489435i −0.309017 0.0489435i 1.00000i \(-0.5\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(180\) 0 0
\(181\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −0.951057 0.690983i −0.951057 0.690983i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.53884 + 1.11803i 1.53884 + 1.11803i 0.951057 + 0.309017i \(0.100000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(192\) 0 0
\(193\) −0.587785 1.80902i −0.587785 1.80902i −0.587785 0.809017i \(-0.700000\pi\)
1.00000i \(-0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.809017 0.587785i −0.809017 0.587785i
\(197\) 1.39680 1.39680i 1.39680 1.39680i 0.587785 0.809017i \(-0.300000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(198\) −0.309017 0.951057i −0.309017 0.951057i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 1.00000 1.00000
\(201\) 0 0
\(202\) 0 0
\(203\) −1.58779 0.809017i −1.58779 0.809017i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0.363271 1.11803i 0.363271 1.11803i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.76007 + 0.896802i −1.76007 + 0.896802i −0.809017 + 0.587785i \(0.800000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(212\) −1.58779 0.809017i −1.58779 0.809017i
\(213\) 0 0
\(214\) −0.0489435 0.309017i −0.0489435 0.309017i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −0.278768 0.142040i −0.278768 0.142040i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(224\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(225\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(226\) −1.11803 + 1.53884i −1.11803 + 1.53884i
\(227\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(228\) 0 0
\(229\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1.58779 + 0.809017i 1.58779 + 0.809017i
\(233\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(252\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(253\) −1.11803 + 0.363271i −1.11803 + 0.363271i
\(254\) 0.951057 + 1.30902i 0.951057 + 1.30902i
\(255\) 0 0
\(256\) −0.809017 0.587785i −0.809017 0.587785i
\(257\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(258\) 0 0
\(259\) 0.896802 1.76007i 0.896802 1.76007i
\(260\) 0 0
\(261\) −0.278768 + 1.76007i −0.278768 + 1.76007i
\(262\) 0 0
\(263\) 0.618034i 0.618034i −0.951057 0.309017i \(-0.900000\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −0.896802 0.142040i −0.896802 0.142040i
\(269\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(270\) 0 0
\(271\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0.951057 0.690983i 0.951057 0.690983i
\(275\) 0.587785 0.809017i 0.587785 0.809017i
\(276\) 0 0
\(277\) −0.896802 1.76007i −0.896802 1.76007i −0.587785 0.809017i \(-0.700000\pi\)
−0.309017 0.951057i \(-0.600000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.80902 0.587785i 1.80902 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
1.00000 \(0\)
\(282\) 0 0
\(283\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(284\) −0.363271 + 0.500000i −0.363271 + 0.500000i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.309017 0.951057i 0.309017 0.951057i
\(289\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −0.896802 + 1.76007i −0.896802 + 1.76007i
\(297\) 0 0
\(298\) 1.39680 + 0.221232i 1.39680 + 0.221232i
\(299\) 0 0
\(300\) 0 0
\(301\) −0.142040 0.896802i −0.142040 0.896802i
\(302\) −0.951057 0.690983i −0.951057 0.690983i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 0.951057 0.309017i 0.951057 0.309017i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(312\) 0 0
\(313\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0.587785 + 1.80902i 0.587785 + 1.80902i
\(317\) 0.809017 0.412215i 0.809017 0.412215i 1.00000i \(-0.5\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(318\) 0 0
\(319\) 1.58779 0.809017i 1.58779 0.809017i
\(320\) 0 0
\(321\) 0 0
\(322\) 1.11803 + 0.363271i 1.11803 + 0.363271i
\(323\) 0 0
\(324\) 1.00000 1.00000
\(325\) 0 0
\(326\) 1.39680 1.39680i 1.39680 1.39680i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.221232 0.221232i 0.221232 0.221232i −0.587785 0.809017i \(-0.700000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(332\) 0 0
\(333\) −1.95106 0.309017i −1.95106 0.309017i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.951057 + 0.690983i 0.951057 + 0.690983i 0.951057 0.309017i \(-0.100000\pi\)
1.00000i \(0.5\pi\)
\(338\) 0.309017 0.951057i 0.309017 0.951057i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(344\) 0.142040 + 0.896802i 0.142040 + 0.896802i
\(345\) 0 0
\(346\) 0 0
\(347\) 1.58779 + 0.809017i 1.58779 + 0.809017i 1.00000 \(0\)
0.587785 + 0.809017i \(0.300000\pi\)
\(348\) 0 0
\(349\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(350\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(351\) 0 0
\(352\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −0.309017 + 0.0489435i −0.309017 + 0.0489435i
\(359\) 0.690983 0.951057i 0.690983 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
1.00000 \(0\)
\(360\) 0 0
\(361\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(368\) −1.11803 0.363271i −1.11803 0.363271i
\(369\) 0 0
\(370\) 0 0
\(371\) 1.76007 + 0.278768i 1.76007 + 0.278768i
\(372\) 0 0
\(373\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.76007 + 0.896802i 1.76007 + 0.896802i 0.951057 + 0.309017i \(0.100000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1.80902 + 0.587785i 1.80902 + 0.587785i
\(383\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.11803 1.53884i −1.11803 1.53884i
\(387\) −0.809017 + 0.412215i −0.809017 + 0.412215i
\(388\) 0 0
\(389\) −0.309017 + 0.0489435i −0.309017 + 0.0489435i −0.309017 0.951057i \(-0.600000\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.951057 0.309017i −0.951057 0.309017i
\(393\) 0 0
\(394\) 0.896802 1.76007i 0.896802 1.76007i
\(395\) 0 0
\(396\) −0.587785 0.809017i −0.587785 0.809017i
\(397\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.951057 0.309017i 0.951057 0.309017i
\(401\) −0.363271 1.11803i −0.363271 1.11803i −0.951057 0.309017i \(-0.900000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) −1.76007 0.278768i −1.76007 0.278768i
\(407\) 0.896802 + 1.76007i 0.896802 + 1.76007i
\(408\) 0 0
\(409\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 1.17557i 1.17557i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(420\) 0 0
\(421\) 0.0489435 0.309017i 0.0489435 0.309017i −0.951057 0.309017i \(-0.900000\pi\)
1.00000 \(0\)
\(422\) −1.39680 + 1.39680i −1.39680 + 1.39680i
\(423\) 0 0
\(424\) −1.76007 0.278768i −1.76007 0.278768i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −0.142040 0.278768i −0.142040 0.278768i
\(429\) 0 0
\(430\) 0 0
\(431\) 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(432\) 0 0
\(433\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.309017 0.0489435i −0.309017 0.0489435i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 1.00000i 1.00000i
\(442\) 0 0
\(443\) 0.278768 1.76007i 0.278768 1.76007i −0.309017 0.951057i \(-0.600000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(449\) 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(450\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(451\) 0 0
\(452\) −0.587785 + 1.80902i −0.587785 + 1.80902i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.53884 + 0.500000i −1.53884 + 0.500000i −0.951057 0.309017i \(-0.900000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(462\) 0 0
\(463\) −1.90211 −1.90211 −0.951057 0.309017i \(-0.900000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(464\) 1.76007 + 0.278768i 1.76007 + 0.278768i
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(468\) 0 0
\(469\) 0.896802 0.142040i 0.896802 0.142040i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.809017 + 0.412215i 0.809017 + 0.412215i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −0.278768 1.76007i −0.278768 1.76007i
\(478\) −0.363271 + 0.500000i −0.363271 + 0.500000i
\(479\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(485\) 0 0
\(486\) 0 0
\(487\) 1.11803 + 1.53884i 1.11803 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.39680 + 0.221232i −1.39680 + 0.221232i −0.809017 0.587785i \(-0.800000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.190983 0.587785i 0.190983 0.587785i
\(498\) 0 0
\(499\) 0.278768 + 1.76007i 0.278768 + 1.76007i 0.587785 + 0.809017i \(0.300000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(504\) 1.00000i 1.00000i
\(505\) 0 0
\(506\) −0.951057 + 0.690983i −0.951057 + 0.690983i
\(507\) 0 0
\(508\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(509\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.951057 0.309017i −0.951057 0.309017i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0.309017 1.95106i 0.309017 1.95106i
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(522\) 0.278768 + 1.76007i 0.278768 + 1.76007i
\(523\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −0.190983 0.587785i −0.190983 0.587785i
\(527\) 0 0
\(528\) 0 0
\(529\) −0.381966 −0.381966
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −0.896802 + 0.142040i −0.896802 + 0.142040i
\(537\) 0 0
\(538\) 0 0
\(539\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(540\) 0 0
\(541\) −0.278768 + 0.142040i −0.278768 + 0.142040i −0.587785 0.809017i \(-0.700000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.39680 + 0.221232i 1.39680 + 0.221232i 0.809017 0.587785i \(-0.200000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(548\) 0.690983 0.951057i 0.690983 0.951057i
\(549\) 0 0
\(550\) 0.309017 0.951057i 0.309017 0.951057i
\(551\) 0 0
\(552\) 0 0
\(553\) −1.11803 1.53884i −1.11803 1.53884i
\(554\) −1.39680 1.39680i −1.39680 1.39680i
\(555\) 0 0
\(556\) 0 0
\(557\) 0.142040 + 0.896802i 0.142040 + 0.896802i 0.951057 + 0.309017i \(0.100000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 1.53884 1.11803i 1.53884 1.11803i
\(563\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(568\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(569\) −1.17557 1.61803i −1.17557 1.61803i −0.587785 0.809017i \(-0.700000\pi\)
−0.587785 0.809017i \(-0.700000\pi\)
\(570\) 0 0
\(571\) −0.221232 + 0.221232i −0.221232 + 0.221232i −0.809017 0.587785i \(-0.800000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.951057 0.690983i 0.951057 0.690983i
\(576\) 1.00000i 1.00000i
\(577\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(578\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.26007 + 1.26007i −1.26007 + 1.26007i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −0.309017 + 1.95106i −0.309017 + 1.95106i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.39680 0.221232i 1.39680 0.221232i
\(597\) 0 0
\(598\) 0 0
\(599\) 1.53884 0.500000i 1.53884 0.500000i 0.587785 0.809017i \(-0.300000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(600\) 0 0
\(601\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(602\) −0.412215 0.809017i −0.412215 0.809017i
\(603\) −0.412215 0.809017i −0.412215 0.809017i
\(604\) −1.11803 0.363271i −1.11803 0.363271i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0.142040 0.896802i 0.142040 0.896802i −0.809017 0.587785i \(-0.800000\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0.809017 0.587785i 0.809017 0.587785i
\(617\) 0.618034i 0.618034i −0.951057 0.309017i \(-0.900000\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(618\) 0 0
\(619\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.951057 1.30902i 0.951057 1.30902i 1.00000i \(-0.5\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(632\) 1.11803 + 1.53884i 1.11803 + 1.53884i
\(633\) 0 0
\(634\) 0.642040 0.642040i 0.642040 0.642040i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 1.26007 1.26007i 1.26007 1.26007i
\(639\) −0.618034 −0.618034
\(640\) 0 0
\(641\) −1.53884 + 1.11803i −1.53884 + 1.11803i −0.587785 + 0.809017i \(0.700000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(642\) 0 0
\(643\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(644\) 1.17557 1.17557
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(648\) 0.951057 0.309017i 0.951057 0.309017i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0.896802 1.76007i 0.896802 1.76007i
\(653\) 0.0489435 + 0.309017i 0.0489435 + 0.309017i 1.00000 \(0\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(662\) 0.142040 0.278768i 0.142040 0.278768i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −1.95106 + 0.309017i −1.95106 + 0.309017i
\(667\) 2.06909 0.327712i 2.06909 0.327712i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i \(0.200000\pi\)
−1.00000 \(\pi\)
\(674\) 1.11803 + 0.363271i 1.11803 + 0.363271i
\(675\) 0 0
\(676\) 1.00000i 1.00000i
\(677\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.39680 + 1.39680i −1.39680 + 1.39680i −0.587785 + 0.809017i \(0.700000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.00000 1.00000
\(687\) 0 0
\(688\) 0.412215 + 0.809017i 0.412215 + 0.809017i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(692\) 0 0
\(693\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(694\) 1.76007 + 0.278768i 1.76007 + 0.278768i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(701\) 0.309017 + 0.0489435i 0.309017 + 0.0489435i 0.309017 0.951057i \(-0.400000\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.809017 0.412215i −0.809017 0.412215i 1.00000i \(-0.5\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(710\) 0 0
\(711\) −1.11803 + 1.53884i −1.11803 + 1.53884i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −0.278768 + 0.142040i −0.278768 + 0.142040i
\(717\) 0 0
\(718\) 0.363271 1.11803i 0.363271 1.11803i
\(719\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.00000 1.00000
\(723\) 0 0
\(724\) 0 0
\(725\) −1.26007 + 1.26007i −1.26007 + 1.26007i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −1.17557 −1.17557
\(737\) −0.412215 + 0.809017i −0.412215 + 0.809017i
\(738\) 0 0
\(739\) −1.58779 + 0.809017i −1.58779 + 0.809017i −0.587785 + 0.809017i \(0.700000\pi\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.76007 0.278768i 1.76007 0.278768i
\(743\) −1.80902 + 0.587785i −1.80902 + 0.587785i −0.809017 + 0.587785i \(0.800000\pi\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −0.642040 + 1.26007i −0.642040 + 1.26007i
\(747\) 0 0
\(748\) 0 0
\(749\) 0.221232 + 0.221232i 0.221232 + 0.221232i
\(750\) 0 0
\(751\) 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
1.00000 \(0\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0.412215 + 0.809017i 0.412215 + 0.809017i 1.00000 \(0\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(758\) 1.95106 + 0.309017i 1.95106 + 0.309017i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(762\) 0 0
\(763\) 0.309017 0.0489435i 0.309017 0.0489435i
\(764\) 1.90211 1.90211
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.53884 1.11803i −1.53884 1.11803i
\(773\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(774\) −0.642040 + 0.642040i −0.642040 + 0.642040i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −0.278768 + 0.142040i −0.278768 + 0.142040i
\(779\) 0 0
\(780\) 0 0
\(781\) 0.363271 + 0.500000i 0.363271 + 0.500000i
\(782\) 0 0
\(783\) 0 0
\(784\) −1.00000 −1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(788\) 0.309017 1.95106i 0.309017 1.95106i
\(789\) 0 0
\(790\) 0 0
\(791\) 1.90211i 1.90211i
\(792\) −0.809017 0.587785i −0.809017 0.587785i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.809017 0.587785i 0.809017 0.587785i
\(801\) 0 0
\(802\) −0.690983 0.951057i −0.690983 0.951057i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.53884 + 0.500000i −1.53884 + 0.500000i −0.951057 0.309017i \(-0.900000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(810\) 0 0
\(811\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(812\) −1.76007 + 0.278768i −1.76007 + 0.278768i
\(813\) 0 0
\(814\) 1.39680 + 1.39680i 1.39680 + 1.39680i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.39680 0.221232i 1.39680 0.221232i 0.587785 0.809017i \(-0.300000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(822\) 0 0
\(823\) 0.587785 + 0.190983i 0.587785 + 0.190983i 0.587785 0.809017i \(-0.300000\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.642040 + 1.26007i 0.642040 + 1.26007i 0.951057 + 0.309017i \(0.100000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(828\) −0.363271 1.11803i −0.363271 1.11803i
\(829\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(840\) 0 0
\(841\) −2.06909 + 0.672288i −2.06909 + 0.672288i
\(842\) −0.0489435 0.309017i −0.0489435 0.309017i
\(843\) 0 0
\(844\) −0.896802 + 1.76007i −0.896802 + 1.76007i
\(845\) 0 0
\(846\) 0 0
\(847\) 1.00000i 1.00000i
\(848\) −1.76007 + 0.278768i −1.76007 + 0.278768i
\(849\) 0 0
\(850\) 0 0
\(851\) 0.363271 + 2.29360i 0.363271 + 2.29360i
\(852\) 0 0
\(853\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −0.221232 0.221232i −0.221232 0.221232i
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 1.61803i 1.61803i
\(863\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.90211 1.90211
\(870\) 0 0
\(871\) 0 0
\(872\) −0.309017 + 0.0489435i −0.309017 + 0.0489435i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −0.896802 0.142040i −0.896802 0.142040i −0.309017 0.951057i \(-0.600000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −0.309017 0.951057i −0.309017 0.951057i
\(883\) −1.39680 0.221232i −1.39680 0.221232i −0.587785 0.809017i \(-0.700000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −0.278768 1.76007i −0.278768 1.76007i
\(887\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(888\) 0 0
\(889\) −1.53884 0.500000i −1.53884 0.500000i
\(890\) 0 0
\(891\) 0.309017 0.951057i 0.309017 0.951057i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 1.00000 1.00000
\(897\) 0 0
\(898\) 1.61803i 1.61803i
\(899\) 0 0
\(900\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 1.90211i 1.90211i
\(905\) 0 0
\(906\) 0 0
\(907\) 0.809017 + 0.412215i 0.809017 + 0.412215i 0.809017 0.587785i \(-0.200000\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0.618034 1.90211i 0.618034 1.90211i 0.309017 0.951057i \(-0.400000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0.587785 0.190983i 0.587785 0.190983i 1.00000i \(-0.5\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1.39680 1.39680i −1.39680 1.39680i
\(926\) −1.80902 + 0.587785i −1.80902 + 0.587785i
\(927\) 0 0
\(928\) 1.76007 0.278768i 1.76007 0.278768i
\(929\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(938\) 0.809017 0.412215i 0.809017 0.412215i
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0.896802 + 0.142040i 0.896802 + 0.142040i
\(947\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.690983 + 0.951057i −0.690983 + 0.951057i 0.309017 + 0.951057i \(0.400000\pi\)
−1.00000 \(1.00000\pi\)
\(954\) −0.809017 1.58779i −0.809017 1.58779i
\(955\) 0 0
\(956\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(957\) 0 0
\(958\) 0 0
\(959\) −0.363271 + 1.11803i −0.363271 + 1.11803i
\(960\) 0 0
\(961\) −0.809017 0.587785i −0.809017 0.587785i
\(962\) 0 0
\(963\) 0.142040 0.278768i 0.142040 0.278768i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.17557i 1.17557i 0.809017 + 0.587785i \(0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(968\) 1.00000i 1.00000i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 1.53884 + 1.11803i 1.53884 + 1.11803i
\(975\) 0 0
\(976\) 0 0
\(977\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −0.142040 0.278768i −0.142040 0.278768i
\(982\) −1.26007 + 0.642040i −1.26007 + 0.642040i
\(983\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.754763 + 0.754763i 0.754763 + 0.754763i
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0.618034i 0.618034i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(998\) 0.809017 + 1.58779i 0.809017 + 1.58779i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1232.1.cq.b.1021.1 yes 8
7.6 odd 2 CM 1232.1.cq.b.1021.1 yes 8
11.5 even 5 1232.1.cq.a.797.1 yes 8
16.5 even 4 1232.1.cq.a.405.1 8
77.27 odd 10 1232.1.cq.a.797.1 yes 8
112.69 odd 4 1232.1.cq.a.405.1 8
176.5 even 20 inner 1232.1.cq.b.181.1 yes 8
1232.181 odd 20 inner 1232.1.cq.b.181.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1232.1.cq.a.405.1 8 16.5 even 4
1232.1.cq.a.405.1 8 112.69 odd 4
1232.1.cq.a.797.1 yes 8 11.5 even 5
1232.1.cq.a.797.1 yes 8 77.27 odd 10
1232.1.cq.b.181.1 yes 8 176.5 even 20 inner
1232.1.cq.b.181.1 yes 8 1232.181 odd 20 inner
1232.1.cq.b.1021.1 yes 8 1.1 even 1 trivial
1232.1.cq.b.1021.1 yes 8 7.6 odd 2 CM