L(s) = 1 | + 6·5-s + 49·7-s − 44·9-s + 77·11-s + 88·13-s + 134·17-s − 14·19-s − 42·23-s − 248·25-s + 10·27-s + 482·29-s − 50·31-s + 294·35-s + 152·37-s + 234·41-s − 472·43-s − 264·45-s − 728·47-s + 1.37e3·49-s − 102·53-s + 462·55-s − 1.70e3·59-s + 656·61-s − 2.15e3·63-s + 528·65-s − 1.12e3·67-s + 918·71-s + ⋯ |
L(s) = 1 | + 0.536·5-s + 2.64·7-s − 1.62·9-s + 2.11·11-s + 1.87·13-s + 1.91·17-s − 0.169·19-s − 0.380·23-s − 1.98·25-s + 0.0712·27-s + 3.08·29-s − 0.289·31-s + 1.41·35-s + 0.675·37-s + 0.891·41-s − 1.67·43-s − 0.874·45-s − 2.25·47-s + 4·49-s − 0.264·53-s + 1.13·55-s − 3.76·59-s + 1.37·61-s − 4.31·63-s + 1.00·65-s − 2.05·67-s + 1.53·71-s + ⋯ |
Λ(s)=(=((228⋅77⋅117)s/2ΓC(s)7L(s)Λ(4−s)
Λ(s)=(=((228⋅77⋅117)s/2ΓC(s+3/2)7L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
61.42301117 |
L(21) |
≈ |
61.42301117 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | (1−pT)7 |
| 11 | (1−pT)7 |
good | 3 | 1+44T2−10T3+524T4−3532T5+18349T6−175828T7+18349p3T8−3532p6T9+524p9T10−10p12T11+44p15T12+p21T14 |
| 5 | 1−6T+284T2−2272T3+65826T4−404002T5+2026369pT6−67987536T7+2026369p4T8−404002p6T9+65826p9T10−2272p12T11+284p15T12−6p18T13+p21T14 |
| 13 | 1−88T+9809T2−715488T3+54045339T4−3006894808T5+175980233971T6−8250801499552T7+175980233971p3T8−3006894808p6T9+54045339p9T10−715488p12T11+9809p15T12−88p18T13+p21T14 |
| 17 | 1−134T+27305T2−2485848T3+290356439T4−20303562618T5+1833806643903T6−111127946382800T7+1833806643903p3T8−20303562618p6T9+290356439p9T10−2485848p12T11+27305p15T12−134p18T13+p21T14 |
| 19 | 1+14T+15445T2+370116T3+221820981T4+3362375266T5+1940890827609T6+36078670195896T7+1940890827609p3T8+3362375266p6T9+221820981p9T10+370116p12T11+15445p15T12+14p18T13+p21T14 |
| 23 | 1+42T+27842T2−501852T3+488798080T4−10372070314T5+8502794586935T6−72704581429128T7+8502794586935p3T8−10372070314p6T9+488798080p9T10−501852p12T11+27842p15T12+42p18T13+p21T14 |
| 29 | 1−482T+228623T2−69234996T3+19038406729T4−4147230797646T5+814089784958751T6−133910789584078360T7+814089784958751p3T8−4147230797646p6T9+19038406729p9T10−69234996p12T11+228623p15T12−482p18T13+p21T14 |
| 31 | 1+50T+165036T2+11906720T3+12248821132T4+1007923922542T5+17662703433551pT6+41569550168789568T7+17662703433551p4T8+1007923922542p6T9+12248821132p9T10+11906720p12T11+165036p15T12+50p18T13+p21T14 |
| 37 | 1−152T+48644T2+3370374T3+914590226T4+238147307416T5+231060901239309T6−34349523495575916T7+231060901239309p3T8+238147307416p6T9+914590226p9T10+3370374p12T11+48644p15T12−152p18T13+p21T14 |
| 41 | 1−234T+5961pT2−32812360T3+26027650695T4−2322405515318T5+2098716471450151T6−166131275752043120T7+2098716471450151p3T8−2322405515318p6T9+26027650695p9T10−32812360p12T11+5961p16T12−234p18T13+p21T14 |
| 43 | 1+472T+299249T2+141073184T3+54709149297T4+20732706560040T5+6662097845348473T6+1954933217456521792T7+6662097845348473p3T8+20732706560040p6T9+54709149297p9T10+141073184p12T11+299249p15T12+472p18T13+p21T14 |
| 47 | 1+728T+531007T2+279637504T3+137101200639T4+56205275522408T5+21393386805952065T6+7209517394974785920T7+21393386805952065p3T8+56205275522408p6T9+137101200639p9T10+279637504p12T11+531007p15T12+728p18T13+p21T14 |
| 53 | 1+102T+362147T2+58937924T3+66192367093T4+16550013323178T5+11223024004883295T6+3035593503241377848T7+11223024004883295p3T8+16550013323178p6T9+66192367093p9T10+58937924p12T11+362147p15T12+102p18T13+p21T14 |
| 59 | 1+1704T+1862148T2+1368305002T3+874437219132T4+491863769450180T5+4551080320375079pT6+12⋯64T7+4551080320375079p4T8+491863769450180p6T9+874437219132p9T10+1368305002p12T11+1862148p15T12+1704p18T13+p21T14 |
| 61 | 1−656T+1183501T2−579578048T3+602414873903T4−232960751490176T5+187633183287067091T6−61372942309294973152T7+187633183287067091p3T8−232960751490176p6T9+602414873903p9T10−579578048p12T11+1183501p15T12−656p18T13+p21T14 |
| 67 | 1+1126T+1986742T2+1557736324T3+24148623212pT4+983663348300682T5+757552257136066331T6+37⋯20T7+757552257136066331p3T8+983663348300682p6T9+24148623212p10T10+1557736324p12T11+1986742p15T12+1126p18T13+p21T14 |
| 71 | 1−918T+1410226T2−1127188880T3+1024999468960T4−707246195335354T5+489168566062675767T6−30⋯88T7+489168566062675767p3T8−707246195335354p6T9+1024999468960p9T10−1127188880p12T11+1410226p15T12−918p18T13+p21T14 |
| 73 | 1−1094T+956505T2+29360648T3−154335549345T4+138405554077542T5+169049507742265063T6−12⋯00T7+169049507742265063p3T8+138405554077542p6T9−154335549345p9T10+29360648p12T11+956505p15T12−1094p18T13+p21T14 |
| 79 | 1+672T+1991289T2+1005883200T3+1879401075445T4+854908116670688T5+1258365779798928861T6+51⋯88T7+1258365779798928861p3T8+854908116670688p6T9+1879401075445p9T10+1005883200p12T11+1991289p15T12+672p18T13+p21T14 |
| 83 | 1+782T+2973761T2+1635268700T3+3819085657785T4+1534814206273218T5+3016850158169180577T6+97⋯64T7+3016850158169180577p3T8+1534814206273218p6T9+3819085657785p9T10+1635268700p12T11+2973761p15T12+782p18T13+p21T14 |
| 89 | 1+464T+2174152T2+844413518T3+2524441633154T4+912233491401400T5+2197789561954212749T6+78⋯20T7+2197789561954212749p3T8+912233491401400p6T9+2524441633154p9T10+844413518p12T11+2174152p15T12+464p18T13+p21T14 |
| 97 | 1−3000T+6069912T2−9347999414T3+12452984432090T4−14784931980343936T5+16273667759607265133T6−16⋯40T7+16273667759607265133p3T8−14784931980343936p6T9+12452984432090p9T10−9347999414p12T11+6069912p15T12−3000p18T13+p21T14 |
show more | |
show less | |
L(s)=p∏ j=1∏14(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.26152928310261404084630890402, −3.94382895927978185697756710197, −3.93975732662952024106181305291, −3.82314871952104351976285773287, −3.40037582810331154894625330305, −3.35437390901574907664249860263, −3.18740671825920417364786833311, −3.14577510364710213365497718125, −3.09908034623271819435335173175, −3.08409610056267059535333611063, −2.78723704626474249035089916959, −2.21802647403040074042824207171, −2.17231899093746881109069787923, −2.12858825219902819317042048998, −1.94516317992995127595829630777, −1.85791546008814427942007511280, −1.66143365173285989362741250358, −1.55151143276967361652105575604, −1.34998767291338910683915493150, −1.02092803072629019538741852465, −0.927199658352570073717193443460, −0.918957780529917934633803546381, −0.65289168032938232957733969051, −0.36606981098494498423112312431, −0.35465166173679589279114760821,
0.35465166173679589279114760821, 0.36606981098494498423112312431, 0.65289168032938232957733969051, 0.918957780529917934633803546381, 0.927199658352570073717193443460, 1.02092803072629019538741852465, 1.34998767291338910683915493150, 1.55151143276967361652105575604, 1.66143365173285989362741250358, 1.85791546008814427942007511280, 1.94516317992995127595829630777, 2.12858825219902819317042048998, 2.17231899093746881109069787923, 2.21802647403040074042824207171, 2.78723704626474249035089916959, 3.08409610056267059535333611063, 3.09908034623271819435335173175, 3.14577510364710213365497718125, 3.18740671825920417364786833311, 3.35437390901574907664249860263, 3.40037582810331154894625330305, 3.82314871952104351976285773287, 3.93975732662952024106181305291, 3.94382895927978185697756710197, 4.26152928310261404084630890402
Plot not available for L-functions of degree greater than 10.