Properties

Label 2-1280-20.19-c2-0-37
Degree $2$
Conductor $1280$
Sign $1$
Analytic cond. $34.8774$
Root an. cond. $5.90571$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.99·3-s + 5·5-s − 6.65·7-s + 26.8·9-s − 29.9·15-s + 39.8·21-s + 40.5·23-s + 25·25-s − 107.·27-s − 53.6·29-s − 33.2·35-s − 53.6·41-s − 25.2·43-s + 134.·45-s + 69.2·47-s − 4.66·49-s − 58·61-s − 179.·63-s + 34.5·67-s − 243.·69-s − 149.·75-s + 399.·81-s + 50.6·83-s + 321.·87-s + 142·89-s + 160.·101-s − 111.·103-s + ⋯
L(s)  = 1  − 1.99·3-s + 5-s − 0.951·7-s + 2.98·9-s − 1.99·15-s + 1.89·21-s + 1.76·23-s + 25-s − 3.96·27-s − 1.85·29-s − 0.951·35-s − 1.30·41-s − 0.587·43-s + 2.98·45-s + 1.47·47-s − 0.0952·49-s − 0.950·61-s − 2.84·63-s + 0.516·67-s − 3.52·69-s − 1.99·75-s + 4.93·81-s + 0.609·83-s + 3.69·87-s + 1.59·89-s + 1.59·101-s − 1.07·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1280\)    =    \(2^{8} \cdot 5\)
Sign: $1$
Analytic conductor: \(34.8774\)
Root analytic conductor: \(5.90571\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1280} (1279, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1280,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.9144593885\)
\(L(\frac12)\) \(\approx\) \(0.9144593885\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 5T \)
good3 \( 1 + 5.99T + 9T^{2} \)
7 \( 1 + 6.65T + 49T^{2} \)
11 \( 1 - 121T^{2} \)
13 \( 1 - 169T^{2} \)
17 \( 1 - 289T^{2} \)
19 \( 1 - 361T^{2} \)
23 \( 1 - 40.5T + 529T^{2} \)
29 \( 1 + 53.6T + 841T^{2} \)
31 \( 1 - 961T^{2} \)
37 \( 1 - 1.36e3T^{2} \)
41 \( 1 + 53.6T + 1.68e3T^{2} \)
43 \( 1 + 25.2T + 1.84e3T^{2} \)
47 \( 1 - 69.2T + 2.20e3T^{2} \)
53 \( 1 - 2.80e3T^{2} \)
59 \( 1 - 3.48e3T^{2} \)
61 \( 1 + 58T + 3.72e3T^{2} \)
67 \( 1 - 34.5T + 4.48e3T^{2} \)
71 \( 1 - 5.04e3T^{2} \)
73 \( 1 - 5.32e3T^{2} \)
79 \( 1 - 6.24e3T^{2} \)
83 \( 1 - 50.6T + 6.88e3T^{2} \)
89 \( 1 - 142T + 7.92e3T^{2} \)
97 \( 1 - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.661444733445550382887149982905, −9.088448190700450320037172266274, −7.34223898693914928053289275438, −6.76749300338934700607953930767, −6.07745907236809940032249462177, −5.42861795944238118415051606916, −4.74442266588613500733054018599, −3.44192736091668191855923241096, −1.80518375195142570530949667186, −0.63115392378885130257010954375, 0.63115392378885130257010954375, 1.80518375195142570530949667186, 3.44192736091668191855923241096, 4.74442266588613500733054018599, 5.42861795944238118415051606916, 6.07745907236809940032249462177, 6.76749300338934700607953930767, 7.34223898693914928053289275438, 9.088448190700450320037172266274, 9.661444733445550382887149982905

Graph of the $Z$-function along the critical line