Properties

Label 1280.3.h.g
Level $1280$
Weight $3$
Character orbit 1280.h
Self dual yes
Analytic conductor $34.877$
Analytic rank $0$
Dimension $4$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,3,Mod(1279,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.1279");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1280.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.8774738381\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 640)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + 5 q^{5} + ( - \beta_{2} - \beta_1) q^{7} + (\beta_{3} + 9) q^{9} - 5 \beta_1 q^{15} + (\beta_{3} + 22) q^{21} + ( - 2 \beta_{2} + 7 \beta_1) q^{23} + 25 q^{25} + (\beta_{2} - 18 \beta_1) q^{27}+ \cdots + 142 q^{89}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 20 q^{5} + 36 q^{9} + 88 q^{21} + 100 q^{25} + 180 q^{45} + 196 q^{49} - 232 q^{61} - 472 q^{69} + 956 q^{81} + 568 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 6x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -3\nu^{3} + 16\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 8\nu^{2} - 24 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 6\beta_1 ) / 16 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 24 ) / 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1279.1
2.28825
0.874032
−0.874032
−2.28825
0 −5.99070 0 5.00000 0 −6.65841 0 26.8885 0
1279.2 0 −0.333851 0 5.00000 0 −12.3153 0 −8.88854 0
1279.3 0 0.333851 0 5.00000 0 12.3153 0 −8.88854 0
1279.4 0 5.99070 0 5.00000 0 6.65841 0 26.8885 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
4.b odd 2 1 inner
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1280.3.h.g 4
4.b odd 2 1 inner 1280.3.h.g 4
5.b even 2 1 inner 1280.3.h.g 4
8.b even 2 1 1280.3.h.e 4
8.d odd 2 1 1280.3.h.e 4
16.e even 4 2 640.3.e.h 8
16.f odd 4 2 640.3.e.h 8
20.d odd 2 1 CM 1280.3.h.g 4
40.e odd 2 1 1280.3.h.e 4
40.f even 2 1 1280.3.h.e 4
80.k odd 4 2 640.3.e.h 8
80.q even 4 2 640.3.e.h 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
640.3.e.h 8 16.e even 4 2
640.3.e.h 8 16.f odd 4 2
640.3.e.h 8 80.k odd 4 2
640.3.e.h 8 80.q even 4 2
1280.3.h.e 4 8.b even 2 1
1280.3.h.e 4 8.d odd 2 1
1280.3.h.e 4 40.e odd 2 1
1280.3.h.e 4 40.f even 2 1
1280.3.h.g 4 1.a even 1 1 trivial
1280.3.h.g 4 4.b odd 2 1 inner
1280.3.h.g 4 5.b even 2 1 inner
1280.3.h.g 4 20.d odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1280, [\chi])\):

\( T_{3}^{4} - 36T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{4} - 196T_{7}^{2} + 6724 \) Copy content Toggle raw display
\( T_{29}^{2} - 2880 \) Copy content Toggle raw display
\( T_{61} + 58 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 36T^{2} + 4 \) Copy content Toggle raw display
$5$ \( (T - 5)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 196T^{2} + 6724 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 2116 T^{2} + 770884 \) Copy content Toggle raw display
$29$ \( (T^{2} - 2880)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - 2880)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 7396 T^{2} + 4318084 \) Copy content Toggle raw display
$47$ \( T^{4} - 8836 T^{2} + 19377604 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T + 58)^{4} \) Copy content Toggle raw display
$67$ \( T^{4} - 17956 T^{2} + 20052484 \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} - 27556 T^{2} + 64032004 \) Copy content Toggle raw display
$89$ \( (T - 142)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less