Properties

Label 1280.3.h.g.1279.1
Level $1280$
Weight $3$
Character 1280.1279
Self dual yes
Analytic conductor $34.877$
Analytic rank $0$
Dimension $4$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,3,Mod(1279,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.1279");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1280.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.8774738381\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 640)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 1279.1
Root \(2.28825\) of defining polynomial
Character \(\chi\) \(=\) 1280.1279

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.99070 q^{3} +5.00000 q^{5} -6.65841 q^{7} +26.8885 q^{9} -29.9535 q^{15} +39.8885 q^{21} +40.5995 q^{23} +25.0000 q^{25} -107.165 q^{27} -53.6656 q^{29} -33.2920 q^{35} -53.6656 q^{41} -25.2796 q^{43} +134.443 q^{45} +69.2363 q^{47} -4.66563 q^{49} -58.0000 q^{61} -179.035 q^{63} +34.5902 q^{67} -243.220 q^{69} -149.768 q^{75} +399.997 q^{81} +50.6150 q^{83} +321.495 q^{87} +142.000 q^{89} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 20 q^{5} + 36 q^{9} + 88 q^{21} + 100 q^{25} + 180 q^{45} + 196 q^{49} - 232 q^{61} - 472 q^{69} + 956 q^{81} + 568 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.99070 −1.99690 −0.998451 0.0556418i \(-0.982280\pi\)
−0.998451 + 0.0556418i \(0.982280\pi\)
\(4\) 0 0
\(5\) 5.00000 1.00000
\(6\) 0 0
\(7\) −6.65841 −0.951201 −0.475600 0.879661i \(-0.657769\pi\)
−0.475600 + 0.879661i \(0.657769\pi\)
\(8\) 0 0
\(9\) 26.8885 2.98762
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) −29.9535 −1.99690
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 39.8885 1.89945
\(22\) 0 0
\(23\) 40.5995 1.76520 0.882599 0.470128i \(-0.155792\pi\)
0.882599 + 0.470128i \(0.155792\pi\)
\(24\) 0 0
\(25\) 25.0000 1.00000
\(26\) 0 0
\(27\) −107.165 −3.96907
\(28\) 0 0
\(29\) −53.6656 −1.85054 −0.925270 0.379310i \(-0.876161\pi\)
−0.925270 + 0.379310i \(0.876161\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −33.2920 −0.951201
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −53.6656 −1.30892 −0.654459 0.756098i \(-0.727104\pi\)
−0.654459 + 0.756098i \(0.727104\pi\)
\(42\) 0 0
\(43\) −25.2796 −0.587898 −0.293949 0.955821i \(-0.594970\pi\)
−0.293949 + 0.955821i \(0.594970\pi\)
\(44\) 0 0
\(45\) 134.443 2.98762
\(46\) 0 0
\(47\) 69.2363 1.47311 0.736556 0.676377i \(-0.236451\pi\)
0.736556 + 0.676377i \(0.236451\pi\)
\(48\) 0 0
\(49\) −4.66563 −0.0952170
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) −58.0000 −0.950820 −0.475410 0.879764i \(-0.657700\pi\)
−0.475410 + 0.879764i \(0.657700\pi\)
\(62\) 0 0
\(63\) −179.035 −2.84182
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 34.5902 0.516272 0.258136 0.966109i \(-0.416892\pi\)
0.258136 + 0.966109i \(0.416892\pi\)
\(68\) 0 0
\(69\) −243.220 −3.52492
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) −149.768 −1.99690
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 399.997 4.93823
\(82\) 0 0
\(83\) 50.6150 0.609820 0.304910 0.952381i \(-0.401374\pi\)
0.304910 + 0.952381i \(0.401374\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 321.495 3.69534
\(88\) 0 0
\(89\) 142.000 1.59551 0.797753 0.602985i \(-0.206022\pi\)
0.797753 + 0.602985i \(0.206022\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 160.997 1.59403 0.797014 0.603960i \(-0.206411\pi\)
0.797014 + 0.603960i \(0.206411\pi\)
\(102\) 0 0
\(103\) −111.190 −1.07951 −0.539756 0.841821i \(-0.681484\pi\)
−0.539756 + 0.841821i \(0.681484\pi\)
\(104\) 0 0
\(105\) 199.443 1.89945
\(106\) 0 0
\(107\) 211.010 1.97206 0.986028 0.166578i \(-0.0532716\pi\)
0.986028 + 0.166578i \(0.0532716\pi\)
\(108\) 0 0
\(109\) −38.0000 −0.348624 −0.174312 0.984690i \(-0.555770\pi\)
−0.174312 + 0.984690i \(0.555770\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 202.998 1.76520
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 121.000 1.00000
\(122\) 0 0
\(123\) 321.495 2.61378
\(124\) 0 0
\(125\) 125.000 1.00000
\(126\) 0 0
\(127\) 100.469 0.791097 0.395549 0.918445i \(-0.370554\pi\)
0.395549 + 0.918445i \(0.370554\pi\)
\(128\) 0 0
\(129\) 151.443 1.17397
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −535.825 −3.96907
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) −414.774 −2.94166
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −268.328 −1.85054
\(146\) 0 0
\(147\) 27.9504 0.190139
\(148\) 0 0
\(149\) 278.000 1.86577 0.932886 0.360172i \(-0.117282\pi\)
0.932886 + 0.360172i \(0.117282\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −270.328 −1.67906
\(162\) 0 0
\(163\) 83.2580 0.510785 0.255393 0.966837i \(-0.417795\pi\)
0.255393 + 0.966837i \(0.417795\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11.2579 −0.0674125 −0.0337063 0.999432i \(-0.510731\pi\)
−0.0337063 + 0.999432i \(0.510731\pi\)
\(168\) 0 0
\(169\) 169.000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) −166.460 −0.951201
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) −53.6656 −0.296495 −0.148248 0.988950i \(-0.547363\pi\)
−0.148248 + 0.988950i \(0.547363\pi\)
\(182\) 0 0
\(183\) 347.461 1.89869
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 713.548 3.77539
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) −207.220 −1.03094
\(202\) 0 0
\(203\) 357.328 1.76023
\(204\) 0 0
\(205\) −268.328 −1.30892
\(206\) 0 0
\(207\) 1091.66 5.27373
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −126.398 −0.587898
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −374.706 −1.68030 −0.840149 0.542356i \(-0.817532\pi\)
−0.840149 + 0.542356i \(0.817532\pi\)
\(224\) 0 0
\(225\) 672.214 2.98762
\(226\) 0 0
\(227\) −52.5065 −0.231306 −0.115653 0.993290i \(-0.536896\pi\)
−0.115653 + 0.993290i \(0.536896\pi\)
\(228\) 0 0
\(229\) 375.659 1.64043 0.820217 0.572052i \(-0.193853\pi\)
0.820217 + 0.572052i \(0.193853\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 346.181 1.47311
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 375.659 1.55875 0.779376 0.626556i \(-0.215536\pi\)
0.779376 + 0.626556i \(0.215536\pi\)
\(242\) 0 0
\(243\) −1431.78 −5.89209
\(244\) 0 0
\(245\) −23.3282 −0.0952170
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −303.220 −1.21775
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1442.99 −5.52870
\(262\) 0 0
\(263\) −513.884 −1.95393 −0.976965 0.213398i \(-0.931547\pi\)
−0.976965 + 0.213398i \(0.931547\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −850.680 −3.18607
\(268\) 0 0
\(269\) 38.0000 0.141264 0.0706320 0.997502i \(-0.477498\pi\)
0.0706320 + 0.997502i \(0.477498\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 375.659 1.33687 0.668433 0.743772i \(-0.266965\pi\)
0.668433 + 0.743772i \(0.266965\pi\)
\(282\) 0 0
\(283\) −108.593 −0.383722 −0.191861 0.981422i \(-0.561452\pi\)
−0.191861 + 0.981422i \(0.561452\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 357.328 1.24504
\(288\) 0 0
\(289\) 289.000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 168.322 0.559209
\(302\) 0 0
\(303\) −964.485 −3.18312
\(304\) 0 0
\(305\) −290.000 −0.950820
\(306\) 0 0
\(307\) 525.791 1.71267 0.856337 0.516418i \(-0.172735\pi\)
0.856337 + 0.516418i \(0.172735\pi\)
\(308\) 0 0
\(309\) 666.105 2.15568
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) −895.174 −2.84182
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −1264.10 −3.93800
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 227.647 0.696168
\(328\) 0 0
\(329\) −461.003 −1.40123
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 172.951 0.516272
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 357.328 1.04177
\(344\) 0 0
\(345\) −1216.10 −3.52492
\(346\) 0 0
\(347\) 565.853 1.63070 0.815350 0.578968i \(-0.196545\pi\)
0.815350 + 0.578968i \(0.196545\pi\)
\(348\) 0 0
\(349\) −697.653 −1.99901 −0.999503 0.0315186i \(-0.989966\pi\)
−0.999503 + 0.0315186i \(0.989966\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 361.000 1.00000
\(362\) 0 0
\(363\) −724.875 −1.99690
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −426.564 −1.16230 −0.581150 0.813797i \(-0.697397\pi\)
−0.581150 + 0.813797i \(0.697397\pi\)
\(368\) 0 0
\(369\) −1442.99 −3.91054
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) −748.838 −1.99690
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) −601.882 −1.57974
\(382\) 0 0
\(383\) 571.862 1.49311 0.746556 0.665322i \(-0.231706\pi\)
0.746556 + 0.665322i \(0.231706\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −679.732 −1.75641
\(388\) 0 0
\(389\) −202.000 −0.519280 −0.259640 0.965705i \(-0.583604\pi\)
−0.259640 + 0.965705i \(0.583604\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −478.000 −1.19202 −0.596010 0.802977i \(-0.703248\pi\)
−0.596010 + 0.802977i \(0.703248\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1999.98 4.93823
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 160.997 0.393635 0.196818 0.980440i \(-0.436939\pi\)
0.196818 + 0.980440i \(0.436939\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 253.075 0.609820
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −778.000 −1.84798 −0.923990 0.382415i \(-0.875092\pi\)
−0.923990 + 0.382415i \(0.875092\pi\)
\(422\) 0 0
\(423\) 1861.66 4.40109
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 386.188 0.904420
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 1607.47 3.69534
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −125.452 −0.284472
\(442\) 0 0
\(443\) 837.975 1.89159 0.945796 0.324762i \(-0.105284\pi\)
0.945796 + 0.324762i \(0.105284\pi\)
\(444\) 0 0
\(445\) 710.000 1.59551
\(446\) 0 0
\(447\) −1665.42 −3.72576
\(448\) 0 0
\(449\) 804.984 1.79284 0.896419 0.443207i \(-0.146159\pi\)
0.896419 + 0.443207i \(0.146159\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 375.659 0.814879 0.407440 0.913232i \(-0.366422\pi\)
0.407440 + 0.913232i \(0.366422\pi\)
\(462\) 0 0
\(463\) −170.243 −0.367696 −0.183848 0.982955i \(-0.558855\pi\)
−0.183848 + 0.982955i \(0.558855\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 742.273 1.58945 0.794725 0.606970i \(-0.207615\pi\)
0.794725 + 0.606970i \(0.207615\pi\)
\(468\) 0 0
\(469\) −230.316 −0.491078
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 1619.46 3.35291
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 939.910 1.93000 0.965000 0.262249i \(-0.0844643\pi\)
0.965000 + 0.262249i \(0.0844643\pi\)
\(488\) 0 0
\(489\) −498.774 −1.01999
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 67.4427 0.134616
\(502\) 0 0
\(503\) −941.802 −1.87237 −0.936185 0.351509i \(-0.885669\pi\)
−0.936185 + 0.351509i \(0.885669\pi\)
\(504\) 0 0
\(505\) 804.984 1.59403
\(506\) 0 0
\(507\) −1012.43 −1.99690
\(508\) 0 0
\(509\) −268.328 −0.527167 −0.263584 0.964637i \(-0.584905\pi\)
−0.263584 + 0.964637i \(0.584905\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −555.949 −1.07951
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −722.000 −1.38580 −0.692898 0.721035i \(-0.743667\pi\)
−0.692898 + 0.721035i \(0.743667\pi\)
\(522\) 0 0
\(523\) 614.521 1.17499 0.587496 0.809227i \(-0.300114\pi\)
0.587496 + 0.809227i \(0.300114\pi\)
\(524\) 0 0
\(525\) 997.214 1.89945
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 1119.32 2.11592
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1055.05 1.97206
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1019.65 1.88474 0.942372 0.334566i \(-0.108590\pi\)
0.942372 + 0.334566i \(0.108590\pi\)
\(542\) 0 0
\(543\) 321.495 0.592072
\(544\) 0 0
\(545\) −190.000 −0.348624
\(546\) 0 0
\(547\) 662.149 1.21051 0.605255 0.796032i \(-0.293071\pi\)
0.605255 + 0.796032i \(0.293071\pi\)
\(548\) 0 0
\(549\) −1559.54 −2.84068
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −747.354 −1.32745 −0.663725 0.747977i \(-0.731025\pi\)
−0.663725 + 0.747977i \(0.731025\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −2663.34 −4.69725
\(568\) 0 0
\(569\) −1126.98 −1.98063 −0.990315 0.138840i \(-0.955663\pi\)
−0.990315 + 0.138840i \(0.955663\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1014.99 1.76520
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −337.016 −0.580061
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1092.89 1.86182 0.930908 0.365254i \(-0.119018\pi\)
0.930908 + 0.365254i \(0.119018\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) −1126.98 −1.87517 −0.937586 0.347754i \(-0.886945\pi\)
−0.937586 + 0.347754i \(0.886945\pi\)
\(602\) 0 0
\(603\) 930.081 1.54242
\(604\) 0 0
\(605\) 605.000 1.00000
\(606\) 0 0
\(607\) 1203.43 1.98258 0.991291 0.131693i \(-0.0420413\pi\)
0.991291 + 0.131693i \(0.0420413\pi\)
\(608\) 0 0
\(609\) −2140.64 −3.51501
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 1607.47 2.61378
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) −4350.85 −7.00620
\(622\) 0 0
\(623\) −945.494 −1.51765
\(624\) 0 0
\(625\) 625.000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 502.347 0.791097
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 590.322 0.920939 0.460470 0.887676i \(-0.347681\pi\)
0.460470 + 0.887676i \(0.347681\pi\)
\(642\) 0 0
\(643\) 1148.97 1.78689 0.893447 0.449168i \(-0.148280\pi\)
0.893447 + 0.449168i \(0.148280\pi\)
\(644\) 0 0
\(645\) 757.214 1.17397
\(646\) 0 0
\(647\) −1292.64 −1.99790 −0.998948 0.0458655i \(-0.985395\pi\)
−0.998948 + 0.0458655i \(0.985395\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 298.000 0.450832 0.225416 0.974263i \(-0.427626\pi\)
0.225416 + 0.974263i \(0.427626\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2178.80 −3.26657
\(668\) 0 0
\(669\) 2244.76 3.35539
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) −2679.12 −3.96907
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 314.551 0.461896
\(682\) 0 0
\(683\) −1275.43 −1.86739 −0.933695 0.358070i \(-0.883435\pi\)
−0.933695 + 0.358070i \(0.883435\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −2250.46 −3.27579
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −902.000 −1.28673 −0.643367 0.765558i \(-0.722463\pi\)
−0.643367 + 0.765558i \(0.722463\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −2073.87 −2.94166
\(706\) 0 0
\(707\) −1071.98 −1.51624
\(708\) 0 0
\(709\) 1234.31 1.74092 0.870458 0.492243i \(-0.163823\pi\)
0.870458 + 0.492243i \(0.163823\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 740.347 1.02683
\(722\) 0 0
\(723\) −2250.46 −3.11268
\(724\) 0 0
\(725\) −1341.64 −1.85054
\(726\) 0 0
\(727\) −1176.68 −1.61854 −0.809272 0.587434i \(-0.800138\pi\)
−0.809272 + 0.587434i \(0.800138\pi\)
\(728\) 0 0
\(729\) 4977.39 6.82770
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 139.752 0.190139
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 361.020 0.485894 0.242947 0.970040i \(-0.421886\pi\)
0.242947 + 0.970040i \(0.421886\pi\)
\(744\) 0 0
\(745\) 1390.00 1.86577
\(746\) 0 0
\(747\) 1360.96 1.82191
\(748\) 0 0
\(749\) −1404.99 −1.87582
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 242.000 0.318003 0.159001 0.987278i \(-0.449173\pi\)
0.159001 + 0.987278i \(0.449173\pi\)
\(762\) 0 0
\(763\) 253.019 0.331611
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 1342.00 1.74512 0.872562 0.488504i \(-0.162457\pi\)
0.872562 + 0.488504i \(0.162457\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 5751.08 7.34493
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1027.94 −1.30614 −0.653072 0.757296i \(-0.726520\pi\)
−0.653072 + 0.757296i \(0.726520\pi\)
\(788\) 0 0
\(789\) 3078.53 3.90181
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 3818.17 4.76676
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −1351.64 −1.67906
\(806\) 0 0
\(807\) −227.647 −0.282090
\(808\) 0 0
\(809\) −1298.00 −1.60445 −0.802225 0.597022i \(-0.796351\pi\)
−0.802225 + 0.597022i \(0.796351\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 416.290 0.510785
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −662.000 −0.806334 −0.403167 0.915126i \(-0.632091\pi\)
−0.403167 + 0.915126i \(0.632091\pi\)
\(822\) 0 0
\(823\) −370.477 −0.450154 −0.225077 0.974341i \(-0.572263\pi\)
−0.225077 + 0.974341i \(0.572263\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1512.42 1.82880 0.914402 0.404807i \(-0.132661\pi\)
0.914402 + 0.404807i \(0.132661\pi\)
\(828\) 0 0
\(829\) 1478.00 1.78287 0.891435 0.453148i \(-0.149699\pi\)
0.891435 + 0.453148i \(0.149699\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −56.2895 −0.0674125
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 2039.00 2.42449
\(842\) 0 0
\(843\) −2250.46 −2.66959
\(844\) 0 0
\(845\) 845.000 1.00000
\(846\) 0 0
\(847\) −805.667 −0.951201
\(848\) 0 0
\(849\) 650.551 0.766256
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) −2140.64 −2.48623
\(862\) 0 0
\(863\) 767.867 0.889764 0.444882 0.895589i \(-0.353246\pi\)
0.444882 + 0.895589i \(0.353246\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1731.31 −1.99690
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −832.301 −0.951201
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −697.653 −0.791888 −0.395944 0.918275i \(-0.629583\pi\)
−0.395944 + 0.918275i \(0.629583\pi\)
\(882\) 0 0
\(883\) 38.9665 0.0441296 0.0220648 0.999757i \(-0.492976\pi\)
0.0220648 + 0.999757i \(0.492976\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1734.69 1.95568 0.977841 0.209350i \(-0.0671349\pi\)
0.977841 + 0.209350i \(0.0671349\pi\)
\(888\) 0 0
\(889\) −668.966 −0.752493
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −1008.37 −1.11669
\(904\) 0 0
\(905\) −268.328 −0.296495
\(906\) 0 0
\(907\) −1450.21 −1.59891 −0.799456 0.600724i \(-0.794879\pi\)
−0.799456 + 0.600724i \(0.794879\pi\)
\(908\) 0 0
\(909\) 4328.97 4.76235
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 1737.30 1.89869
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) −3149.86 −3.42004
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −2989.73 −3.22517
\(928\) 0 0
\(929\) −1770.97 −1.90631 −0.953157 0.302476i \(-0.902187\pi\)
−0.953157 + 0.302476i \(0.902187\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1878.30 1.99606 0.998032 0.0626993i \(-0.0199709\pi\)
0.998032 + 0.0626993i \(0.0199709\pi\)
\(942\) 0 0
\(943\) −2178.80 −2.31050
\(944\) 0 0
\(945\) 3567.74 3.77539
\(946\) 0 0
\(947\) −867.687 −0.916248 −0.458124 0.888888i \(-0.651478\pi\)
−0.458124 + 0.888888i \(0.651478\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 961.000 1.00000
\(962\) 0 0
\(963\) 5673.75 5.89175
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1529.15 −1.58134 −0.790668 0.612246i \(-0.790266\pi\)
−0.790668 + 0.612246i \(0.790266\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −1021.76 −1.04155
\(982\) 0 0
\(983\) −1576.41 −1.60367 −0.801836 0.597544i \(-0.796143\pi\)
−0.801836 + 0.597544i \(0.796143\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 2761.73 2.79811
\(988\) 0 0
\(989\) −1026.34 −1.03776
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.3.h.g.1279.1 4
4.3 odd 2 inner 1280.3.h.g.1279.4 4
5.4 even 2 inner 1280.3.h.g.1279.4 4
8.3 odd 2 1280.3.h.e.1279.1 4
8.5 even 2 1280.3.h.e.1279.4 4
16.3 odd 4 640.3.e.h.319.7 yes 8
16.5 even 4 640.3.e.h.319.8 yes 8
16.11 odd 4 640.3.e.h.319.2 yes 8
16.13 even 4 640.3.e.h.319.1 8
20.19 odd 2 CM 1280.3.h.g.1279.1 4
40.19 odd 2 1280.3.h.e.1279.4 4
40.29 even 2 1280.3.h.e.1279.1 4
80.19 odd 4 640.3.e.h.319.1 8
80.29 even 4 640.3.e.h.319.7 yes 8
80.59 odd 4 640.3.e.h.319.8 yes 8
80.69 even 4 640.3.e.h.319.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
640.3.e.h.319.1 8 16.13 even 4
640.3.e.h.319.1 8 80.19 odd 4
640.3.e.h.319.2 yes 8 16.11 odd 4
640.3.e.h.319.2 yes 8 80.69 even 4
640.3.e.h.319.7 yes 8 16.3 odd 4
640.3.e.h.319.7 yes 8 80.29 even 4
640.3.e.h.319.8 yes 8 16.5 even 4
640.3.e.h.319.8 yes 8 80.59 odd 4
1280.3.h.e.1279.1 4 8.3 odd 2
1280.3.h.e.1279.1 4 40.29 even 2
1280.3.h.e.1279.4 4 8.5 even 2
1280.3.h.e.1279.4 4 40.19 odd 2
1280.3.h.g.1279.1 4 1.1 even 1 trivial
1280.3.h.g.1279.1 4 20.19 odd 2 CM
1280.3.h.g.1279.4 4 4.3 odd 2 inner
1280.3.h.g.1279.4 4 5.4 even 2 inner