L(s) = 1 | + i·2-s + (0.707 + 0.707i)5-s − i·7-s + i·8-s + (−0.707 + 0.707i)10-s + 11-s − i·13-s + 14-s − 16-s − i·17-s + 1.41i·19-s + i·22-s + 1.00i·25-s + 26-s − 29-s + ⋯ |
L(s) = 1 | + i·2-s + (0.707 + 0.707i)5-s − i·7-s + i·8-s + (−0.707 + 0.707i)10-s + 11-s − i·13-s + 14-s − 16-s − i·17-s + 1.41i·19-s + i·22-s + 1.00i·25-s + 26-s − 29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.169 - 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.169 - 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.384129482\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.384129482\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.707 - 0.707i)T \) |
| 29 | \( 1 + T \) |
good | 2 | \( 1 - iT - T^{2} \) |
| 7 | \( 1 + iT - T^{2} \) |
| 11 | \( 1 - T + T^{2} \) |
| 13 | \( 1 + iT - T^{2} \) |
| 17 | \( 1 + iT - T^{2} \) |
| 19 | \( 1 - 1.41iT - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 31 | \( 1 + 1.41iT - T^{2} \) |
| 37 | \( 1 + 1.41T + T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - iT - T^{2} \) |
| 53 | \( 1 + 1.41T + T^{2} \) |
| 59 | \( 1 - 1.41iT - T^{2} \) |
| 61 | \( 1 + 1.41iT - T^{2} \) |
| 67 | \( 1 - iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( 1 - 1.41T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.951341626290097909224608454913, −9.240714301375710485092467306224, −8.036741708688563176233231622346, −7.43599191633021730782861685397, −6.79702715156859495192709331649, −5.99960822400291924195681016217, −5.38250658370185532485174349822, −4.05344393099094602045311876221, −3.00698395384819701814263092080, −1.67038125642667276524652896145,
1.53299647145158683911279144529, 2.12252140003167944483305309268, 3.35522843904284125642139184055, 4.39497443868652757035883322767, 5.37591952760100189981128218137, 6.41102835994116180479947010341, 6.93685517473482952822409025129, 8.536126068260713750722347587293, 9.098126507622570628551320832310, 9.534675365412083283193699606776