L(s) = 1 | + i·2-s + (0.707 + 0.707i)5-s − i·7-s + i·8-s + (−0.707 + 0.707i)10-s + 11-s − i·13-s + 14-s − 16-s − i·17-s + 1.41i·19-s + i·22-s + 1.00i·25-s + 26-s − 29-s + ⋯ |
L(s) = 1 | + i·2-s + (0.707 + 0.707i)5-s − i·7-s + i·8-s + (−0.707 + 0.707i)10-s + 11-s − i·13-s + 14-s − 16-s − i·17-s + 1.41i·19-s + i·22-s + 1.00i·25-s + 26-s − 29-s + ⋯ |
Λ(s)=(=(1305s/2ΓC(s)L(s)(0.169−0.985i)Λ(1−s)
Λ(s)=(=(1305s/2ΓC(s)L(s)(0.169−0.985i)Λ(1−s)
Degree: |
2 |
Conductor: |
1305
= 32⋅5⋅29
|
Sign: |
0.169−0.985i
|
Analytic conductor: |
0.651279 |
Root analytic conductor: |
0.807019 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1305(1304,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1305, ( :0), 0.169−0.985i)
|
Particular Values
L(21) |
≈ |
1.384129482 |
L(21) |
≈ |
1.384129482 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(−0.707−0.707i)T |
| 29 | 1+T |
good | 2 | 1−iT−T2 |
| 7 | 1+iT−T2 |
| 11 | 1−T+T2 |
| 13 | 1+iT−T2 |
| 17 | 1+iT−T2 |
| 19 | 1−1.41iT−T2 |
| 23 | 1+T2 |
| 31 | 1+1.41iT−T2 |
| 37 | 1+1.41T+T2 |
| 41 | 1+T2 |
| 43 | 1+T2 |
| 47 | 1−iT−T2 |
| 53 | 1+1.41T+T2 |
| 59 | 1−1.41iT−T2 |
| 61 | 1+1.41iT−T2 |
| 67 | 1−iT−T2 |
| 71 | 1−T2 |
| 73 | 1+T2 |
| 79 | 1−T2 |
| 83 | 1+T2 |
| 89 | 1+T+T2 |
| 97 | 1−1.41T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.951341626290097909224608454913, −9.240714301375710485092467306224, −8.036741708688563176233231622346, −7.43599191633021730782861685397, −6.79702715156859495192709331649, −5.99960822400291924195681016217, −5.38250658370185532485174349822, −4.05344393099094602045311876221, −3.00698395384819701814263092080, −1.67038125642667276524652896145,
1.53299647145158683911279144529, 2.12252140003167944483305309268, 3.35522843904284125642139184055, 4.39497443868652757035883322767, 5.37591952760100189981128218137, 6.41102835994116180479947010341, 6.93685517473482952822409025129, 8.536126068260713750722347587293, 9.098126507622570628551320832310, 9.534675365412083283193699606776