Properties

Label 1305.1.b.b.1304.4
Level $1305$
Weight $1$
Character 1305.1304
Analytic conductor $0.651$
Analytic rank $0$
Dimension $4$
Projective image $S_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,1,Mod(1304,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.1304");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1305.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.651279841486\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.2.19575.1

Embedding invariants

Embedding label 1304.4
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1305.1304
Dual form 1305.1.b.b.1304.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +(0.707107 + 0.707107i) q^{5} -1.00000i q^{7} +1.00000i q^{8} +(-0.707107 + 0.707107i) q^{10} +1.00000 q^{11} -1.00000i q^{13} +1.00000 q^{14} -1.00000 q^{16} -1.00000i q^{17} +1.41421i q^{19} +1.00000i q^{22} +1.00000i q^{25} +1.00000 q^{26} -1.00000 q^{29} -1.41421i q^{31} +1.00000 q^{34} +(0.707107 - 0.707107i) q^{35} -1.41421 q^{37} -1.41421 q^{38} +(-0.707107 + 0.707107i) q^{40} +1.00000i q^{47} -1.00000 q^{50} -1.41421 q^{53} +(0.707107 + 0.707107i) q^{55} +1.00000 q^{56} -1.00000i q^{58} +1.41421i q^{59} -1.41421i q^{61} +1.41421 q^{62} -1.00000 q^{64} +(0.707107 - 0.707107i) q^{65} +1.00000i q^{67} +(0.707107 + 0.707107i) q^{70} -1.41421i q^{74} -1.00000i q^{77} +(-0.707107 - 0.707107i) q^{80} +(0.707107 - 0.707107i) q^{85} +1.00000i q^{88} -1.00000 q^{89} -1.00000 q^{91} -1.00000 q^{94} +(-1.00000 + 1.00000i) q^{95} +1.41421 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{11} + 4 q^{14} - 4 q^{16} + 4 q^{26} - 4 q^{29} + 4 q^{34} - 4 q^{50} + 4 q^{56} - 4 q^{64} - 4 q^{89} - 4 q^{91} - 4 q^{94} - 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(3\) 0 0
\(4\) 0 0
\(5\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(6\) 0 0
\(7\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(8\) 1.00000i 1.00000i
\(9\) 0 0
\(10\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(11\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) 0 0
\(13\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(14\) 1.00000 1.00000
\(15\) 0 0
\(16\) −1.00000 −1.00000
\(17\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(18\) 0 0
\(19\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.00000i 1.00000i
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 1.00000i 1.00000i
\(26\) 1.00000 1.00000
\(27\) 0 0
\(28\) 0 0
\(29\) −1.00000 −1.00000
\(30\) 0 0
\(31\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 1.00000 1.00000
\(35\) 0.707107 0.707107i 0.707107 0.707107i
\(36\) 0 0
\(37\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(38\) −1.41421 −1.41421
\(39\) 0 0
\(40\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −1.00000 −1.00000
\(51\) 0 0
\(52\) 0 0
\(53\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(54\) 0 0
\(55\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(56\) 1.00000 1.00000
\(57\) 0 0
\(58\) 1.00000i 1.00000i
\(59\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(60\) 0 0
\(61\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(62\) 1.41421 1.41421
\(63\) 0 0
\(64\) −1.00000 −1.00000
\(65\) 0.707107 0.707107i 0.707107 0.707107i
\(66\) 0 0
\(67\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 1.41421i 1.41421i
\(75\) 0 0
\(76\) 0 0
\(77\) 1.00000i 1.00000i
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) −0.707107 0.707107i −0.707107 0.707107i
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0.707107 0.707107i 0.707107 0.707107i
\(86\) 0 0
\(87\) 0 0
\(88\) 1.00000i 1.00000i
\(89\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) 0 0
\(91\) −1.00000 −1.00000
\(92\) 0 0
\(93\) 0 0
\(94\) −1.00000 −1.00000
\(95\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(96\) 0 0
\(97\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 1.00000 1.00000
\(105\) 0 0
\(106\) 1.41421i 1.41421i
\(107\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) 0 0
\(109\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(110\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(111\) 0 0
\(112\) 1.00000i 1.00000i
\(113\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −1.41421 −1.41421
\(119\) −1.00000 −1.00000
\(120\) 0 0
\(121\) 0 0
\(122\) 1.41421 1.41421
\(123\) 0 0
\(124\) 0 0
\(125\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(126\) 0 0
\(127\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(128\) 1.00000i 1.00000i
\(129\) 0 0
\(130\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(131\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(132\) 0 0
\(133\) 1.41421 1.41421
\(134\) −1.00000 −1.00000
\(135\) 0 0
\(136\) 1.00000 1.00000
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.00000i 1.00000i
\(144\) 0 0
\(145\) −0.707107 0.707107i −0.707107 0.707107i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) −1.41421 −1.41421
\(153\) 0 0
\(154\) 1.00000 1.00000
\(155\) 1.00000 1.00000i 1.00000 1.00000i
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(171\) 0 0
\(172\) 0 0
\(173\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(174\) 0 0
\(175\) 1.00000 1.00000
\(176\) −1.00000 −1.00000
\(177\) 0 0
\(178\) 1.00000i 1.00000i
\(179\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(180\) 0 0
\(181\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(182\) 1.00000i 1.00000i
\(183\) 0 0
\(184\) 0 0
\(185\) −1.00000 1.00000i −1.00000 1.00000i
\(186\) 0 0
\(187\) 1.00000i 1.00000i
\(188\) 0 0
\(189\) 0 0
\(190\) −1.00000 1.00000i −1.00000 1.00000i
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(194\) 1.41421i 1.41421i
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(200\) −1.00000 −1.00000
\(201\) 0 0
\(202\) 1.00000i 1.00000i
\(203\) 1.00000i 1.00000i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 1.00000i 1.00000i
\(209\) 1.41421i 1.41421i
\(210\) 0 0
\(211\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.41421i 1.41421i
\(215\) 0 0
\(216\) 0 0
\(217\) −1.41421 −1.41421
\(218\) 1.00000i 1.00000i
\(219\) 0 0
\(220\) 0 0
\(221\) −1.00000 −1.00000
\(222\) 0 0
\(223\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 1.00000 1.00000
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1.00000i 1.00000i
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(236\) 0 0
\(237\) 0 0
\(238\) 1.00000i 1.00000i
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.41421 1.41421
\(248\) 1.41421 1.41421
\(249\) 0 0
\(250\) −0.707107 0.707107i −0.707107 0.707107i
\(251\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 1.41421i 1.41421i
\(255\) 0 0
\(256\) 0 0
\(257\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(258\) 0 0
\(259\) 1.41421i 1.41421i
\(260\) 0 0
\(261\) 0 0
\(262\) 1.00000i 1.00000i
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) −1.00000 1.00000i −1.00000 1.00000i
\(266\) 1.41421i 1.41421i
\(267\) 0 0
\(268\) 0 0
\(269\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 1.00000i 1.00000i
\(273\) 0 0
\(274\) 0 0
\(275\) 1.00000i 1.00000i
\(276\) 0 0
\(277\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(278\) 1.00000i 1.00000i
\(279\) 0 0
\(280\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 1.00000 1.00000
\(287\) 0 0
\(288\) 0 0
\(289\) 0 0
\(290\) 0.707107 0.707107i 0.707107 0.707107i
\(291\) 0 0
\(292\) 0 0
\(293\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(294\) 0 0
\(295\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(296\) 1.41421i 1.41421i
\(297\) 0 0
\(298\) 1.41421 1.41421
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 1.41421i 1.41421i
\(305\) 1.00000 1.00000i 1.00000 1.00000i
\(306\) 0 0
\(307\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(311\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(312\) 0 0
\(313\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(318\) 0 0
\(319\) −1.00000 −1.00000
\(320\) −0.707107 0.707107i −0.707107 0.707107i
\(321\) 0 0
\(322\) 0 0
\(323\) 1.41421 1.41421
\(324\) 0 0
\(325\) 1.00000 1.00000
\(326\) 1.41421i 1.41421i
\(327\) 0 0
\(328\) 0 0
\(329\) 1.00000 1.00000
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 1.41421i 1.41421i
\(335\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(336\) 0 0
\(337\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.41421i 1.41421i
\(342\) 0 0
\(343\) 1.00000i 1.00000i
\(344\) 0 0
\(345\) 0 0
\(346\) 1.41421i 1.41421i
\(347\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 1.00000i 1.00000i
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 1.41421 1.41421
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −1.00000 −1.00000
\(362\) 1.00000i 1.00000i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 1.00000 1.00000i 1.00000 1.00000i
\(371\) 1.41421i 1.41421i
\(372\) 0 0
\(373\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 1.00000 1.00000
\(375\) 0 0
\(376\) −1.00000 −1.00000
\(377\) 1.00000i 1.00000i
\(378\) 0 0
\(379\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0.707107 0.707107i 0.707107 0.707107i
\(386\) 1.41421i 1.41421i
\(387\) 0 0
\(388\) 0 0
\(389\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 1.00000i 1.00000i
\(399\) 0 0
\(400\) 1.00000i 1.00000i
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) −1.41421 −1.41421
\(404\) 0 0
\(405\) 0 0
\(406\) −1.00000 −1.00000
\(407\) −1.41421 −1.41421
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.41421 1.41421
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) −1.41421 −1.41421
\(419\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(420\) 0 0
\(421\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(422\) 1.41421 1.41421
\(423\) 0 0
\(424\) 1.41421i 1.41421i
\(425\) 1.00000 1.00000
\(426\) 0 0
\(427\) −1.41421 −1.41421
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 1.41421i 1.41421i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(441\) 0 0
\(442\) 1.00000i 1.00000i
\(443\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(444\) 0 0
\(445\) −0.707107 0.707107i −0.707107 0.707107i
\(446\) −1.00000 −1.00000
\(447\) 0 0
\(448\) 1.00000i 1.00000i
\(449\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.707107 0.707107i −0.707107 0.707107i
\(456\) 0 0
\(457\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(464\) 1.00000 1.00000
\(465\) 0 0
\(466\) 0 0
\(467\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 1.00000 1.00000
\(470\) −0.707107 0.707107i −0.707107 0.707107i
\(471\) 0 0
\(472\) −1.41421 −1.41421
\(473\) 0 0
\(474\) 0 0
\(475\) −1.41421 −1.41421
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 1.41421i 1.41421i
\(482\) 1.00000i 1.00000i
\(483\) 0 0
\(484\) 0 0
\(485\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(486\) 0 0
\(487\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 1.41421 1.41421
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 1.00000i 1.00000i
\(494\) 1.41421i 1.41421i
\(495\) 0 0
\(496\) 1.41421i 1.41421i
\(497\) 0 0
\(498\) 0 0
\(499\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 1.00000i 1.00000i
\(503\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(504\) 0 0
\(505\) −0.707107 0.707107i −0.707107 0.707107i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 1.00000i
\(513\) 0 0
\(514\) 1.41421i 1.41421i
\(515\) 0 0
\(516\) 0 0
\(517\) 1.00000i 1.00000i
\(518\) −1.41421 −1.41421
\(519\) 0 0
\(520\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.41421 −1.41421
\(528\) 0 0
\(529\) −1.00000 −1.00000
\(530\) 1.00000 1.00000i 1.00000 1.00000i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −1.00000 1.00000i −1.00000 1.00000i
\(536\) −1.00000 −1.00000
\(537\) 0 0
\(538\) 1.00000i 1.00000i
\(539\) 0 0
\(540\) 0 0
\(541\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −0.707107 0.707107i −0.707107 0.707107i
\(546\) 0 0
\(547\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) −1.00000 −1.00000
\(551\) 1.41421i 1.41421i
\(552\) 0 0
\(553\) 0 0
\(554\) 1.00000 1.00000
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(561\) 0 0
\(562\) 0 0
\(563\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0 0
\(565\) 0.707107 0.707107i 0.707107 0.707107i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.41421 −1.41421
\(584\) 0 0
\(585\) 0 0
\(586\) −1.00000 −1.00000
\(587\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(588\) 0 0
\(589\) 2.00000 2.00000
\(590\) −1.00000 1.00000i −1.00000 1.00000i
\(591\) 0 0
\(592\) 1.41421 1.41421
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) −0.707107 0.707107i −0.707107 0.707107i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(611\) 1.00000 1.00000
\(612\) 0 0
\(613\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(614\) 1.41421i 1.41421i
\(615\) 0 0
\(616\) 1.00000 1.00000
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 1.00000i 1.00000i
\(623\) 1.00000i 1.00000i
\(624\) 0 0
\(625\) −1.00000 −1.00000
\(626\) −1.00000 −1.00000
\(627\) 0 0
\(628\) 0 0
\(629\) 1.41421i 1.41421i
\(630\) 0 0
\(631\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 1.00000 1.00000
\(635\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(636\) 0 0
\(637\) 0 0
\(638\) 1.00000i 1.00000i
\(639\) 0 0
\(640\) 0.707107 0.707107i 0.707107 0.707107i
\(641\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) 0 0
\(643\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.41421i 1.41421i
\(647\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(648\) 0 0
\(649\) 1.41421i 1.41421i
\(650\) 1.00000i 1.00000i
\(651\) 0 0
\(652\) 0 0
\(653\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(654\) 0 0
\(655\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(656\) 0 0
\(657\) 0 0
\(658\) 1.00000i 1.00000i
\(659\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 0 0
\(661\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) −0.707107 0.707107i −0.707107 0.707107i
\(671\) 1.41421i 1.41421i
\(672\) 0 0
\(673\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(674\) 1.41421i 1.41421i
\(675\) 0 0
\(676\) 0 0
\(677\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(678\) 0 0
\(679\) 1.41421i 1.41421i
\(680\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(681\) 0 0
\(682\) 1.41421 1.41421
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.00000 1.00000
\(687\) 0 0
\(688\) 0 0
\(689\) 1.41421i 1.41421i
\(690\) 0 0
\(691\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 1.41421i 1.41421i
\(695\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 2.00000i 2.00000i
\(704\) −1.00000 −1.00000
\(705\) 0 0
\(706\) 0 0
\(707\) 1.00000i 1.00000i
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.00000i 1.00000i
\(713\) 0 0
\(714\) 0 0
\(715\) 0.707107 0.707107i 0.707107 0.707107i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.00000i 1.00000i
\(723\) 0 0
\(724\) 0 0
\(725\) 1.00000i 1.00000i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 1.00000i 1.00000i
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 1.41421i 1.41421i
\(735\) 0 0
\(736\) 0 0
\(737\) 1.00000i 1.00000i
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1.41421 −1.41421
\(743\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(744\) 0 0
\(745\) 1.00000 1.00000i 1.00000 1.00000i
\(746\) −2.00000 −2.00000
\(747\) 0 0
\(748\) 0 0
\(749\) 1.41421i 1.41421i
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 1.00000i 1.00000i
\(753\) 0 0
\(754\) −1.00000 −1.00000
\(755\) 0 0
\(756\) 0 0
\(757\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(758\) −1.41421 −1.41421
\(759\) 0 0
\(760\) −1.00000 1.00000i −1.00000 1.00000i
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 1.00000i 1.00000i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.41421 1.41421
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 1.41421 1.41421
\(776\) 1.41421i 1.41421i
\(777\) 0 0
\(778\) 1.00000i 1.00000i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.00000 −1.00000
\(792\) 0 0
\(793\) −1.41421 −1.41421
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 1.00000 1.00000
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 1.41421i 1.41421i
\(807\) 0 0
\(808\) 1.00000i 1.00000i
\(809\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(810\) 0 0
\(811\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1.41421i 1.41421i
\(815\) −1.00000 1.00000i −1.00000 1.00000i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 1.41421i 1.41421i
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.00000i 1.00000i
\(833\) 0 0
\(834\) 0 0
\(835\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(836\) 0 0
\(837\) 0 0
\(838\) 1.41421 1.41421
\(839\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) −1.41421 −1.41421
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 1.41421 1.41421
\(849\) 0 0
\(850\) 1.00000i 1.00000i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 1.41421i 1.41421i
\(855\) 0 0
\(856\) 1.41421i 1.41421i
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −1.41421 −1.41421
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 1.00000 1.00000
\(872\) 1.00000i 1.00000i
\(873\) 0 0
\(874\) 0 0
\(875\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 1.00000i 1.00000i
\(879\) 0 0
\(880\) −0.707107 0.707107i −0.707107 0.707107i
\(881\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.00000 −1.00000
\(887\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(888\) 0 0
\(889\) 1.41421i 1.41421i
\(890\) 0.707107 0.707107i 0.707107 0.707107i
\(891\) 0 0
\(892\) 0 0
\(893\) −1.41421 −1.41421
\(894\) 0 0
\(895\) 1.00000 1.00000i 1.00000 1.00000i
\(896\) −1.00000 −1.00000
\(897\) 0 0
\(898\) 1.00000i 1.00000i
\(899\) 1.41421i 1.41421i
\(900\) 0 0
\(901\) 1.41421i 1.41421i
\(902\) 0 0
\(903\) 0 0
\(904\) 1.00000 1.00000
\(905\) −0.707107 0.707107i −0.707107 0.707107i
\(906\) 0 0
\(907\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0.707107 0.707107i 0.707107 0.707107i
\(911\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 1.00000 1.00000
\(915\) 0 0
\(916\) 0 0
\(917\) 1.00000i 1.00000i
\(918\) 0 0
\(919\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 1.41421i 1.41421i
\(926\) −1.00000 −1.00000
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) −2.00000 −2.00000
\(935\) 0.707107 0.707107i 0.707107 0.707107i
\(936\) 0 0
\(937\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(938\) 1.00000i 1.00000i
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 1.41421i 1.41421i
\(945\) 0 0
\(946\) 0 0
\(947\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 1.41421i 1.41421i
\(951\) 0 0
\(952\) 1.00000i 1.00000i
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1.00000 −1.00000
\(962\) −1.41421 −1.41421
\(963\) 0 0
\(964\) 0 0
\(965\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(966\) 0 0
\(967\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(971\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(972\) 0 0
\(973\) 1.00000i 1.00000i
\(974\) −2.00000 −2.00000
\(975\) 0 0
\(976\) 1.41421i 1.41421i
\(977\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(978\) 0 0
\(979\) −1.00000 −1.00000
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −1.00000 −1.00000
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 1.00000i 1.00000i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.1.b.b.1304.4 yes 4
3.2 odd 2 1305.1.b.a.1304.1 4
5.4 even 2 inner 1305.1.b.b.1304.1 yes 4
15.14 odd 2 1305.1.b.a.1304.4 yes 4
29.28 even 2 1305.1.b.a.1304.2 yes 4
87.86 odd 2 inner 1305.1.b.b.1304.3 yes 4
145.144 even 2 1305.1.b.a.1304.3 yes 4
435.434 odd 2 inner 1305.1.b.b.1304.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1305.1.b.a.1304.1 4 3.2 odd 2
1305.1.b.a.1304.2 yes 4 29.28 even 2
1305.1.b.a.1304.3 yes 4 145.144 even 2
1305.1.b.a.1304.4 yes 4 15.14 odd 2
1305.1.b.b.1304.1 yes 4 5.4 even 2 inner
1305.1.b.b.1304.2 yes 4 435.434 odd 2 inner
1305.1.b.b.1304.3 yes 4 87.86 odd 2 inner
1305.1.b.b.1304.4 yes 4 1.1 even 1 trivial