Properties

Label 1305.1.b.b.1304.1
Level 13051305
Weight 11
Character 1305.1304
Analytic conductor 0.6510.651
Analytic rank 00
Dimension 44
Projective image S4S_{4}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,1,Mod(1304,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.1304");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1305=32529 1305 = 3^{2} \cdot 5 \cdot 29
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1305.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.6512798414860.651279841486
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: S4S_{4}
Projective field: Galois closure of 4.2.19575.1

Embedding invariants

Embedding label 1304.1
Root 0.7071070.707107i0.707107 - 0.707107i of defining polynomial
Character χ\chi == 1305.1304
Dual form 1305.1.b.b.1304.3

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000iq2+(0.707107+0.707107i)q5+1.00000iq71.00000iq8+(0.707107+0.707107i)q10+1.00000q11+1.00000iq13+1.00000q141.00000q16+1.00000iq17+1.41421iq191.00000iq221.00000iq25+1.00000q261.00000q291.41421iq31+1.00000q34+(0.7071070.707107i)q35+1.41421q37+1.41421q38+(0.707107+0.707107i)q401.00000iq471.00000q50+1.41421q53+(0.707107+0.707107i)q55+1.00000q56+1.00000iq58+1.41421iq591.41421iq611.41421q621.00000q64+(0.7071070.707107i)q651.00000iq67+(0.707107+0.707107i)q701.41421iq74+1.00000iq77+(0.7071070.707107i)q80+(0.7071070.707107i)q851.00000iq881.00000q891.00000q911.00000q94+(1.000001.00000i)q951.41421q97+O(q100)q-1.00000i q^{2} +(-0.707107 + 0.707107i) q^{5} +1.00000i q^{7} -1.00000i q^{8} +(0.707107 + 0.707107i) q^{10} +1.00000 q^{11} +1.00000i q^{13} +1.00000 q^{14} -1.00000 q^{16} +1.00000i q^{17} +1.41421i q^{19} -1.00000i q^{22} -1.00000i q^{25} +1.00000 q^{26} -1.00000 q^{29} -1.41421i q^{31} +1.00000 q^{34} +(-0.707107 - 0.707107i) q^{35} +1.41421 q^{37} +1.41421 q^{38} +(0.707107 + 0.707107i) q^{40} -1.00000i q^{47} -1.00000 q^{50} +1.41421 q^{53} +(-0.707107 + 0.707107i) q^{55} +1.00000 q^{56} +1.00000i q^{58} +1.41421i q^{59} -1.41421i q^{61} -1.41421 q^{62} -1.00000 q^{64} +(-0.707107 - 0.707107i) q^{65} -1.00000i q^{67} +(-0.707107 + 0.707107i) q^{70} -1.41421i q^{74} +1.00000i q^{77} +(0.707107 - 0.707107i) q^{80} +(-0.707107 - 0.707107i) q^{85} -1.00000i q^{88} -1.00000 q^{89} -1.00000 q^{91} -1.00000 q^{94} +(-1.00000 - 1.00000i) q^{95} -1.41421 q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q11+4q144q16+4q264q29+4q344q50+4q564q644q894q914q944q95+O(q100) 4 q + 4 q^{11} + 4 q^{14} - 4 q^{16} + 4 q^{26} - 4 q^{29} + 4 q^{34} - 4 q^{50} + 4 q^{56} - 4 q^{64} - 4 q^{89} - 4 q^{91} - 4 q^{94} - 4 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1305Z)×\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times.

nn 146146 262262 901901
χ(n)\chi(n) 1-1 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
33 0 0
44 0 0
55 −0.707107 + 0.707107i −0.707107 + 0.707107i
66 0 0
77 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
88 1.00000i 1.00000i
99 0 0
1010 0.707107 + 0.707107i 0.707107 + 0.707107i
1111 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
1212 0 0
1313 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
1414 1.00000 1.00000
1515 0 0
1616 −1.00000 −1.00000
1717 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
1818 0 0
1919 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
2020 0 0
2121 0 0
2222 1.00000i 1.00000i
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 1.00000i 1.00000i
2626 1.00000 1.00000
2727 0 0
2828 0 0
2929 −1.00000 −1.00000
3030 0 0
3131 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
3232 0 0
3333 0 0
3434 1.00000 1.00000
3535 −0.707107 0.707107i −0.707107 0.707107i
3636 0 0
3737 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
3838 1.41421 1.41421
3939 0 0
4040 0.707107 + 0.707107i 0.707107 + 0.707107i
4141 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0 0
4545 0 0
4646 0 0
4747 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
4848 0 0
4949 0 0
5050 −1.00000 −1.00000
5151 0 0
5252 0 0
5353 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
5454 0 0
5555 −0.707107 + 0.707107i −0.707107 + 0.707107i
5656 1.00000 1.00000
5757 0 0
5858 1.00000i 1.00000i
5959 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
6060 0 0
6161 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
6262 −1.41421 −1.41421
6363 0 0
6464 −1.00000 −1.00000
6565 −0.707107 0.707107i −0.707107 0.707107i
6666 0 0
6767 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
6868 0 0
6969 0 0
7070 −0.707107 + 0.707107i −0.707107 + 0.707107i
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0 0
7373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7474 1.41421i 1.41421i
7575 0 0
7676 0 0
7777 1.00000i 1.00000i
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 0.707107 0.707107i 0.707107 0.707107i
8181 0 0
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 −0.707107 0.707107i −0.707107 0.707107i
8686 0 0
8787 0 0
8888 1.00000i 1.00000i
8989 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
9090 0 0
9191 −1.00000 −1.00000
9292 0 0
9393 0 0
9494 −1.00000 −1.00000
9595 −1.00000 1.00000i −1.00000 1.00000i
9696 0 0
9797 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
9898 0 0
9999 0 0
100100 0 0
101101 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 1.00000 1.00000
105105 0 0
106106 1.41421i 1.41421i
107107 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
108108 0 0
109109 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
110110 0.707107 + 0.707107i 0.707107 + 0.707107i
111111 0 0
112112 1.00000i 1.00000i
113113 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 1.41421 1.41421
119119 −1.00000 −1.00000
120120 0 0
121121 0 0
122122 −1.41421 −1.41421
123123 0 0
124124 0 0
125125 0.707107 + 0.707107i 0.707107 + 0.707107i
126126 0 0
127127 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
128128 1.00000i 1.00000i
129129 0 0
130130 −0.707107 + 0.707107i −0.707107 + 0.707107i
131131 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
132132 0 0
133133 −1.41421 −1.41421
134134 −1.00000 −1.00000
135135 0 0
136136 1.00000 1.00000
137137 0 0 1.00000 00
−1.00000 π\pi
138138 0 0
139139 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
140140 0 0
141141 0 0
142142 0 0
143143 1.00000i 1.00000i
144144 0 0
145145 0.707107 0.707107i 0.707107 0.707107i
146146 0 0
147147 0 0
148148 0 0
149149 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
150150 0 0
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 1.41421 1.41421
153153 0 0
154154 1.00000 1.00000
155155 1.00000 + 1.00000i 1.00000 + 1.00000i
156156 0 0
157157 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
164164 0 0
165165 0 0
166166 0 0
167167 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
168168 0 0
169169 0 0
170170 −0.707107 + 0.707107i −0.707107 + 0.707107i
171171 0 0
172172 0 0
173173 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
174174 0 0
175175 1.00000 1.00000
176176 −1.00000 −1.00000
177177 0 0
178178 1.00000i 1.00000i
179179 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
180180 0 0
181181 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
182182 1.00000i 1.00000i
183183 0 0
184184 0 0
185185 −1.00000 + 1.00000i −1.00000 + 1.00000i
186186 0 0
187187 1.00000i 1.00000i
188188 0 0
189189 0 0
190190 −1.00000 + 1.00000i −1.00000 + 1.00000i
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
194194 1.41421i 1.41421i
195195 0 0
196196 0 0
197197 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
198198 0 0
199199 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
200200 −1.00000 −1.00000
201201 0 0
202202 1.00000i 1.00000i
203203 1.00000i 1.00000i
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 1.00000i 1.00000i
209209 1.41421i 1.41421i
210210 0 0
211211 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
212212 0 0
213213 0 0
214214 1.41421i 1.41421i
215215 0 0
216216 0 0
217217 1.41421 1.41421
218218 1.00000i 1.00000i
219219 0 0
220220 0 0
221221 −1.00000 −1.00000
222222 0 0
223223 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
224224 0 0
225225 0 0
226226 1.00000 1.00000
227227 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 0 0
232232 1.00000i 1.00000i
233233 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 0.707107 + 0.707107i 0.707107 + 0.707107i
236236 0 0
237237 0 0
238238 1.00000i 1.00000i
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
242242 0 0
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 −1.41421 −1.41421
248248 −1.41421 −1.41421
249249 0 0
250250 0.707107 0.707107i 0.707107 0.707107i
251251 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
252252 0 0
253253 0 0
254254 1.41421i 1.41421i
255255 0 0
256256 0 0
257257 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
258258 0 0
259259 1.41421i 1.41421i
260260 0 0
261261 0 0
262262 1.00000i 1.00000i
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 −1.00000 + 1.00000i −1.00000 + 1.00000i
266266 1.41421i 1.41421i
267267 0 0
268268 0 0
269269 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 1.00000i 1.00000i
273273 0 0
274274 0 0
275275 1.00000i 1.00000i
276276 0 0
277277 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
278278 1.00000i 1.00000i
279279 0 0
280280 −0.707107 + 0.707107i −0.707107 + 0.707107i
281281 0 0 1.00000 00
−1.00000 π\pi
282282 0 0
283283 0 0 1.00000 00
−1.00000 π\pi
284284 0 0
285285 0 0
286286 1.00000 1.00000
287287 0 0
288288 0 0
289289 0 0
290290 −0.707107 0.707107i −0.707107 0.707107i
291291 0 0
292292 0 0
293293 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
294294 0 0
295295 −1.00000 1.00000i −1.00000 1.00000i
296296 1.41421i 1.41421i
297297 0 0
298298 −1.41421 −1.41421
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 1.41421i 1.41421i
305305 1.00000 + 1.00000i 1.00000 + 1.00000i
306306 0 0
307307 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
308308 0 0
309309 0 0
310310 1.00000 1.00000i 1.00000 1.00000i
311311 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
312312 0 0
313313 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
314314 0 0
315315 0 0
316316 0 0
317317 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
318318 0 0
319319 −1.00000 −1.00000
320320 0.707107 0.707107i 0.707107 0.707107i
321321 0 0
322322 0 0
323323 −1.41421 −1.41421
324324 0 0
325325 1.00000 1.00000
326326 1.41421i 1.41421i
327327 0 0
328328 0 0
329329 1.00000 1.00000
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 0 0
334334 1.41421i 1.41421i
335335 0.707107 + 0.707107i 0.707107 + 0.707107i
336336 0 0
337337 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
338338 0 0
339339 0 0
340340 0 0
341341 1.41421i 1.41421i
342342 0 0
343343 1.00000i 1.00000i
344344 0 0
345345 0 0
346346 1.41421i 1.41421i
347347 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
348348 0 0
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 1.00000i 1.00000i
351351 0 0
352352 0 0
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 −1.41421 −1.41421
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 −1.00000 −1.00000
362362 1.00000i 1.00000i
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
368368 0 0
369369 0 0
370370 1.00000 + 1.00000i 1.00000 + 1.00000i
371371 1.41421i 1.41421i
372372 0 0
373373 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
374374 1.00000 1.00000
375375 0 0
376376 −1.00000 −1.00000
377377 1.00000i 1.00000i
378378 0 0
379379 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
384384 0 0
385385 −0.707107 0.707107i −0.707107 0.707107i
386386 1.41421i 1.41421i
387387 0 0
388388 0 0
389389 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 0 0 1.00000 00
−1.00000 π\pi
398398 1.00000i 1.00000i
399399 0 0
400400 1.00000i 1.00000i
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 1.41421 1.41421
404404 0 0
405405 0 0
406406 −1.00000 −1.00000
407407 1.41421 1.41421
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 0 0
413413 −1.41421 −1.41421
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 1.41421 1.41421
419419 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
420420 0 0
421421 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
422422 −1.41421 −1.41421
423423 0 0
424424 1.41421i 1.41421i
425425 1.00000 1.00000
426426 0 0
427427 1.41421 1.41421
428428 0 0
429429 0 0
430430 0 0
431431 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
432432 0 0
433433 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
434434 1.41421i 1.41421i
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
440440 0.707107 + 0.707107i 0.707107 + 0.707107i
441441 0 0
442442 1.00000i 1.00000i
443443 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
444444 0 0
445445 0.707107 0.707107i 0.707107 0.707107i
446446 −1.00000 −1.00000
447447 0 0
448448 1.00000i 1.00000i
449449 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0.707107 0.707107i 0.707107 0.707107i
456456 0 0
457457 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
464464 1.00000 1.00000
465465 0 0
466466 0 0
467467 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
468468 0 0
469469 1.00000 1.00000
470470 0.707107 0.707107i 0.707107 0.707107i
471471 0 0
472472 1.41421 1.41421
473473 0 0
474474 0 0
475475 1.41421 1.41421
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 1.41421i 1.41421i
482482 1.00000i 1.00000i
483483 0 0
484484 0 0
485485 1.00000 1.00000i 1.00000 1.00000i
486486 0 0
487487 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
488488 −1.41421 −1.41421
489489 0 0
490490 0 0
491491 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 1.00000i 1.00000i
494494 1.41421i 1.41421i
495495 0 0
496496 1.41421i 1.41421i
497497 0 0
498498 0 0
499499 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
500500 0 0
501501 0 0
502502 1.00000i 1.00000i
503503 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
504504 0 0
505505 0.707107 0.707107i 0.707107 0.707107i
506506 0 0
507507 0 0
508508 0 0
509509 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
510510 0 0
511511 0 0
512512 1.00000i 1.00000i
513513 0 0
514514 1.41421i 1.41421i
515515 0 0
516516 0 0
517517 1.00000i 1.00000i
518518 1.41421 1.41421
519519 0 0
520520 −0.707107 + 0.707107i −0.707107 + 0.707107i
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
524524 0 0
525525 0 0
526526 0 0
527527 1.41421 1.41421
528528 0 0
529529 −1.00000 −1.00000
530530 1.00000 + 1.00000i 1.00000 + 1.00000i
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 −1.00000 + 1.00000i −1.00000 + 1.00000i
536536 −1.00000 −1.00000
537537 0 0
538538 1.00000i 1.00000i
539539 0 0
540540 0 0
541541 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
542542 0 0
543543 0 0
544544 0 0
545545 0.707107 0.707107i 0.707107 0.707107i
546546 0 0
547547 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
548548 0 0
549549 0 0
550550 −1.00000 −1.00000
551551 1.41421i 1.41421i
552552 0 0
553553 0 0
554554 1.00000 1.00000
555555 0 0
556556 0 0
557557 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
558558 0 0
559559 0 0
560560 0.707107 + 0.707107i 0.707107 + 0.707107i
561561 0 0
562562 0 0
563563 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
564564 0 0
565565 −0.707107 0.707107i −0.707107 0.707107i
566566 0 0
567567 0 0
568568 0 0
569569 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 1.41421 1.41421
584584 0 0
585585 0 0
586586 −1.00000 −1.00000
587587 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
588588 0 0
589589 2.00000 2.00000
590590 −1.00000 + 1.00000i −1.00000 + 1.00000i
591591 0 0
592592 −1.41421 −1.41421
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0.707107 0.707107i 0.707107 0.707107i
596596 0 0
597597 0 0
598598 0 0
599599 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
608608 0 0
609609 0 0
610610 1.00000 1.00000i 1.00000 1.00000i
611611 1.00000 1.00000
612612 0 0
613613 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
614614 1.41421i 1.41421i
615615 0 0
616616 1.00000 1.00000
617617 0 0 1.00000 00
−1.00000 π\pi
618618 0 0
619619 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
620620 0 0
621621 0 0
622622 1.00000i 1.00000i
623623 1.00000i 1.00000i
624624 0 0
625625 −1.00000 −1.00000
626626 −1.00000 −1.00000
627627 0 0
628628 0 0
629629 1.41421i 1.41421i
630630 0 0
631631 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
632632 0 0
633633 0 0
634634 1.00000 1.00000
635635 1.00000 1.00000i 1.00000 1.00000i
636636 0 0
637637 0 0
638638 1.00000i 1.00000i
639639 0 0
640640 −0.707107 0.707107i −0.707107 0.707107i
641641 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
642642 0 0
643643 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
644644 0 0
645645 0 0
646646 1.41421i 1.41421i
647647 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
648648 0 0
649649 1.41421i 1.41421i
650650 1.00000i 1.00000i
651651 0 0
652652 0 0
653653 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
654654 0 0
655655 −0.707107 + 0.707107i −0.707107 + 0.707107i
656656 0 0
657657 0 0
658658 1.00000i 1.00000i
659659 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
660660 0 0
661661 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
662662 0 0
663663 0 0
664664 0 0
665665 1.00000 1.00000i 1.00000 1.00000i
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0.707107 0.707107i 0.707107 0.707107i
671671 1.41421i 1.41421i
672672 0 0
673673 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
674674 1.41421i 1.41421i
675675 0 0
676676 0 0
677677 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
678678 0 0
679679 1.41421i 1.41421i
680680 −0.707107 + 0.707107i −0.707107 + 0.707107i
681681 0 0
682682 −1.41421 −1.41421
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 0 0
686686 1.00000 1.00000
687687 0 0
688688 0 0
689689 1.41421i 1.41421i
690690 0 0
691691 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
692692 0 0
693693 0 0
694694 1.41421i 1.41421i
695695 −0.707107 + 0.707107i −0.707107 + 0.707107i
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 2.00000i 2.00000i
704704 −1.00000 −1.00000
705705 0 0
706706 0 0
707707 1.00000i 1.00000i
708708 0 0
709709 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
710710 0 0
711711 0 0
712712 1.00000i 1.00000i
713713 0 0
714714 0 0
715715 −0.707107 0.707107i −0.707107 0.707107i
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0 0
721721 0 0
722722 1.00000i 1.00000i
723723 0 0
724724 0 0
725725 1.00000i 1.00000i
726726 0 0
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 1.00000i 1.00000i
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
734734 1.41421i 1.41421i
735735 0 0
736736 0 0
737737 1.00000i 1.00000i
738738 0 0
739739 0 0 1.00000 00
−1.00000 π\pi
740740 0 0
741741 0 0
742742 1.41421 1.41421
743743 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
744744 0 0
745745 1.00000 + 1.00000i 1.00000 + 1.00000i
746746 −2.00000 −2.00000
747747 0 0
748748 0 0
749749 1.41421i 1.41421i
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 1.00000i 1.00000i
753753 0 0
754754 −1.00000 −1.00000
755755 0 0
756756 0 0
757757 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
758758 1.41421 1.41421
759759 0 0
760760 −1.00000 + 1.00000i −1.00000 + 1.00000i
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 1.00000i 1.00000i
764764 0 0
765765 0 0
766766 0 0
767767 −1.41421 −1.41421
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 −0.707107 + 0.707107i −0.707107 + 0.707107i
771771 0 0
772772 0 0
773773 0 0 1.00000 00
−1.00000 π\pi
774774 0 0
775775 −1.41421 −1.41421
776776 1.41421i 1.41421i
777777 0 0
778778 1.00000i 1.00000i
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
788788 0 0
789789 0 0
790790 0 0
791791 −1.00000 −1.00000
792792 0 0
793793 1.41421 1.41421
794794 0 0
795795 0 0
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 1.00000 1.00000
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 1.41421i 1.41421i
807807 0 0
808808 1.00000i 1.00000i
809809 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
810810 0 0
811811 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
812812 0 0
813813 0 0
814814 1.41421i 1.41421i
815815 −1.00000 + 1.00000i −1.00000 + 1.00000i
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
822822 0 0
823823 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
824824 0 0
825825 0 0
826826 1.41421i 1.41421i
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
830830 0 0
831831 0 0
832832 1.00000i 1.00000i
833833 0 0
834834 0 0
835835 1.00000 1.00000i 1.00000 1.00000i
836836 0 0
837837 0 0
838838 −1.41421 −1.41421
839839 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
840840 0 0
841841 1.00000 1.00000
842842 1.41421 1.41421
843843 0 0
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 −1.41421 −1.41421
849849 0 0
850850 1.00000i 1.00000i
851851 0 0
852852 0 0
853853 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
854854 1.41421i 1.41421i
855855 0 0
856856 1.41421i 1.41421i
857857 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
860860 0 0
861861 0 0
862862 1.41421 1.41421
863863 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 1.00000 1.00000i 1.00000 1.00000i
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 1.00000 1.00000
872872 1.00000i 1.00000i
873873 0 0
874874 0 0
875875 −0.707107 + 0.707107i −0.707107 + 0.707107i
876876 0 0
877877 0 0 1.00000 00
−1.00000 π\pi
878878 1.00000i 1.00000i
879879 0 0
880880 0.707107 0.707107i 0.707107 0.707107i
881881 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 −1.00000 −1.00000
887887 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
888888 0 0
889889 1.41421i 1.41421i
890890 −0.707107 0.707107i −0.707107 0.707107i
891891 0 0
892892 0 0
893893 1.41421 1.41421
894894 0 0
895895 1.00000 + 1.00000i 1.00000 + 1.00000i
896896 −1.00000 −1.00000
897897 0 0
898898 1.00000i 1.00000i
899899 1.41421i 1.41421i
900900 0 0
901901 1.41421i 1.41421i
902902 0 0
903903 0 0
904904 1.00000 1.00000
905905 0.707107 0.707107i 0.707107 0.707107i
906906 0 0
907907 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
908908 0 0
909909 0 0
910910 −0.707107 0.707107i −0.707107 0.707107i
911911 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
912912 0 0
913913 0 0
914914 1.00000 1.00000
915915 0 0
916916 0 0
917917 1.00000i 1.00000i
918918 0 0
919919 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 1.41421i 1.41421i
926926 −1.00000 −1.00000
927927 0 0
928928 0 0
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 −2.00000 −2.00000
935935 −0.707107 0.707107i −0.707107 0.707107i
936936 0 0
937937 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
938938 1.00000i 1.00000i
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 1.41421i 1.41421i
945945 0 0
946946 0 0
947947 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
948948 0 0
949949 0 0
950950 1.41421i 1.41421i
951951 0 0
952952 1.00000i 1.00000i
953953 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −1.00000 −1.00000
962962 1.41421 1.41421
963963 0 0
964964 0 0
965965 1.00000 1.00000i 1.00000 1.00000i
966966 0 0
967967 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
968968 0 0
969969 0 0
970970 −1.00000 1.00000i −1.00000 1.00000i
971971 2.00000 2.00000 1.00000 00
1.00000 00
972972 0 0
973973 1.00000i 1.00000i
974974 −2.00000 −2.00000
975975 0 0
976976 1.41421i 1.41421i
977977 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
978978 0 0
979979 −1.00000 −1.00000
980980 0 0
981981 0 0
982982 0 0
983983 0 0 1.00000 00
−1.00000 π\pi
984984 0 0
985985 0 0
986986 −1.00000 −1.00000
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
992992 0 0
993993 0 0
994994 0 0
995995 −0.707107 + 0.707107i −0.707107 + 0.707107i
996996 0 0
997997 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
998998 1.00000i 1.00000i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.1.b.b.1304.1 yes 4
3.2 odd 2 1305.1.b.a.1304.4 yes 4
5.4 even 2 inner 1305.1.b.b.1304.4 yes 4
15.14 odd 2 1305.1.b.a.1304.1 4
29.28 even 2 1305.1.b.a.1304.3 yes 4
87.86 odd 2 inner 1305.1.b.b.1304.2 yes 4
145.144 even 2 1305.1.b.a.1304.2 yes 4
435.434 odd 2 inner 1305.1.b.b.1304.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1305.1.b.a.1304.1 4 15.14 odd 2
1305.1.b.a.1304.2 yes 4 145.144 even 2
1305.1.b.a.1304.3 yes 4 29.28 even 2
1305.1.b.a.1304.4 yes 4 3.2 odd 2
1305.1.b.b.1304.1 yes 4 1.1 even 1 trivial
1305.1.b.b.1304.2 yes 4 87.86 odd 2 inner
1305.1.b.b.1304.3 yes 4 435.434 odd 2 inner
1305.1.b.b.1304.4 yes 4 5.4 even 2 inner