L(s) = 1 | − i·2-s − 4-s − 2i·5-s + i·8-s − 2·10-s + 16-s − 2i·17-s + 2i·20-s − 3·25-s + 2i·29-s − i·32-s − 2·34-s − 37-s + 2·40-s + 49-s + 3i·50-s + ⋯ |
L(s) = 1 | − i·2-s − 4-s − 2i·5-s + i·8-s − 2·10-s + 16-s − 2i·17-s + 2i·20-s − 3·25-s + 2i·29-s − i·32-s − 2·34-s − 37-s + 2·40-s + 49-s + 3i·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8518879111\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8518879111\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 \) |
| 37 | \( 1 + T \) |
good | 5 | \( 1 + 2iT - T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + 2iT - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 - 2iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - 2T + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + 2iT - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.263316578553629191612984165716, −8.948198610174952362307836033265, −8.174508012512069959233592352296, −7.16664658589124262904547794499, −5.50116656458830640152099860584, −5.06240638219309506615955028832, −4.35031676942568073193058559590, −3.21418910234419495105039951092, −1.84593576095628764278001514242, −0.74639961767412490699413610569,
2.20670773972408657015567492181, 3.52071921081218638260797079824, 4.10210315070514634945543175068, 5.63725486358125138537236851318, 6.28692990200769658556860899977, 6.81329015461849506235384451688, 7.73669272123748992875920331166, 8.244531112739665959405529418217, 9.449464391846759011155041588538, 10.27430262381862409988665993183