Properties

Label 1332.1.b.c
Level $1332$
Weight $1$
Character orbit 1332.b
Analytic conductor $0.665$
Analytic rank $0$
Dimension $2$
Projective image $D_{2}$
CM/RM discs -4, -111, 444
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1332,1,Mod(739,1332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1332, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1332.739");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1332 = 2^{2} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1332.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.664754596827\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(i, \sqrt{111})\)
Artin image: $D_4:C_2$
Artin field: Galois closure of 8.0.255488256.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - i q^{2} - q^{4} - 2 i q^{5} + i q^{8} - 2 q^{10} + q^{16} - 2 i q^{17} + 2 i q^{20} - 3 q^{25} + 2 i q^{29} - i q^{32} - 2 q^{34} - q^{37} + 2 q^{40} + q^{49} + 3 i q^{50} + 2 q^{58} - q^{64} + \cdots - i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 4 q^{10} + 2 q^{16} - 6 q^{25} - 4 q^{34} - 2 q^{37} + 4 q^{40} + 2 q^{49} + 4 q^{58} - 2 q^{64} + 4 q^{73} - 8 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1332\mathbb{Z}\right)^\times\).

\(n\) \(667\) \(1037\) \(1297\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
739.1
1.00000i
1.00000i
1.00000i 0 −1.00000 2.00000i 0 0 1.00000i 0 −2.00000
739.2 1.00000i 0 −1.00000 2.00000i 0 0 1.00000i 0 −2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
111.d odd 2 1 CM by \(\Q(\sqrt{-111}) \)
444.g even 2 1 RM by \(\Q(\sqrt{111}) \)
3.b odd 2 1 inner
12.b even 2 1 inner
37.b even 2 1 inner
148.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1332.1.b.c 2
3.b odd 2 1 inner 1332.1.b.c 2
4.b odd 2 1 CM 1332.1.b.c 2
12.b even 2 1 inner 1332.1.b.c 2
37.b even 2 1 inner 1332.1.b.c 2
111.d odd 2 1 CM 1332.1.b.c 2
148.b odd 2 1 inner 1332.1.b.c 2
444.g even 2 1 RM 1332.1.b.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1332.1.b.c 2 1.a even 1 1 trivial
1332.1.b.c 2 3.b odd 2 1 inner
1332.1.b.c 2 4.b odd 2 1 CM
1332.1.b.c 2 12.b even 2 1 inner
1332.1.b.c 2 37.b even 2 1 inner
1332.1.b.c 2 111.d odd 2 1 CM
1332.1.b.c 2 148.b odd 2 1 inner
1332.1.b.c 2 444.g even 2 1 RM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1332, [\chi])\):

\( T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{23} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 4 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 4 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 4 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( (T + 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T - 2)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 4 \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less