L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s − 5-s + (0.499 − 0.866i)6-s + (0.5 − 0.866i)7-s + 0.999·8-s + (0.5 + 0.866i)10-s − 0.999·12-s − 0.999·14-s + (−0.5 − 0.866i)15-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (0.499 − 0.866i)20-s + 0.999·21-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s − 5-s + (0.499 − 0.866i)6-s + (0.5 − 0.866i)7-s + 0.999·8-s + (0.5 + 0.866i)10-s − 0.999·12-s − 0.999·14-s + (−0.5 − 0.866i)15-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (0.499 − 0.866i)20-s + 0.999·21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.711 + 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.711 + 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8689575783\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8689575783\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + T + T^{2} \) |
| 7 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 - 2T + T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + T + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.855339659553033433900507536411, −9.037523255936515794198935074887, −8.142546902488715057187245317363, −7.71871737014065492320530361274, −6.74771899739252605207314424248, −4.89295158604076564450827586576, −4.30830815097083046854960840124, −3.60941195263442396701033604260, −2.77379702019684074899418429618, −1.00953677988744670395117215108,
1.33459080947564551581067895464, 2.54358603099472396009383018560, 4.05037507740436950626742637493, 4.99992003657759727172325455197, 6.01705003682056279250632511020, 6.82256053180735567459924108778, 7.81243000993520649585949784565, 8.061293133847610931600101169269, 8.637990824210638062983306887919, 9.639883151340193740955985166158