L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s − 5-s + (0.499 + 0.866i)6-s + (0.5 + 0.866i)7-s + 0.999·8-s + (0.5 − 0.866i)10-s − 0.999·12-s − 0.999·14-s + (−0.5 + 0.866i)15-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)17-s + (0.499 + 0.866i)20-s + 0.999·21-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s − 5-s + (0.499 + 0.866i)6-s + (0.5 + 0.866i)7-s + 0.999·8-s + (0.5 − 0.866i)10-s − 0.999·12-s − 0.999·14-s + (−0.5 + 0.866i)15-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)17-s + (0.499 + 0.866i)20-s + 0.999·21-s + ⋯ |
Λ(s)=(=(1352s/2ΓC(s)L(s)(0.711−0.702i)Λ(1−s)
Λ(s)=(=(1352s/2ΓC(s)L(s)(0.711−0.702i)Λ(1−s)
Degree: |
2 |
Conductor: |
1352
= 23⋅132
|
Sign: |
0.711−0.702i
|
Analytic conductor: |
0.674735 |
Root analytic conductor: |
0.821423 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1352(147,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1352, ( :0), 0.711−0.702i)
|
Particular Values
L(21) |
≈ |
0.8689575783 |
L(21) |
≈ |
0.8689575783 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5−0.866i)T |
| 13 | 1 |
good | 3 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 5 | 1+T+T2 |
| 7 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 17 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(0.5+0.866i)T2 |
| 29 | 1+(0.5+0.866i)T2 |
| 31 | 1−2T+T2 |
| 37 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 41 | 1+(0.5+0.866i)T2 |
| 43 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 47 | 1+T+T2 |
| 53 | 1−T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(0.5−0.866i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 73 | 1−T2 |
| 79 | 1−T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5+0.866i)T2 |
| 97 | 1+(0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.639883151340193740955985166158, −8.637990824210638062983306887919, −8.061293133847610931600101169269, −7.81243000993520649585949784565, −6.82256053180735567459924108778, −6.01705003682056279250632511020, −4.99992003657759727172325455197, −4.05037507740436950626742637493, −2.54358603099472396009383018560, −1.33459080947564551581067895464,
1.00953677988744670395117215108, 2.77379702019684074899418429618, 3.60941195263442396701033604260, 4.30830815097083046854960840124, 4.89295158604076564450827586576, 6.74771899739252605207314424248, 7.71871737014065492320530361274, 8.142546902488715057187245317363, 9.037523255936515794198935074887, 9.855339659553033433900507536411