Properties

Label 1352.1.p.a
Level 13521352
Weight 11
Character orbit 1352.p
Analytic conductor 0.6750.675
Analytic rank 00
Dimension 22
Projective image D3D_{3}
CM discriminant -104
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1352,1,Mod(147,1352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1352, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1352.147");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1352=23132 1352 = 2^{3} \cdot 13^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1352.p (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.6747358970800.674735897080
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 104)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.104.1
Artin image: C3×S3C_3\times S_3
Artin field: Galois closure of 6.0.190102016.3

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ6q2+ζ6q3+ζ62q4q5ζ62q6ζ62q7+q8+ζ6q10q12q14ζ6q15ζ6q16ζ62q17+q96+O(q100) q - \zeta_{6} q^{2} + \zeta_{6} q^{3} + \zeta_{6}^{2} q^{4} - q^{5} - \zeta_{6}^{2} q^{6} - \zeta_{6}^{2} q^{7} + q^{8} + \zeta_{6} q^{10} - q^{12} - q^{14} - \zeta_{6} q^{15} - \zeta_{6} q^{16} - \zeta_{6}^{2} q^{17} + \cdots - q^{96} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq2+q3q42q5+q6+q7+2q8+q102q122q14q15q16+q17+q20+2q21+q24+2q27+q28q30+4q31+2q96+O(q100) 2 q - q^{2} + q^{3} - q^{4} - 2 q^{5} + q^{6} + q^{7} + 2 q^{8} + q^{10} - 2 q^{12} - 2 q^{14} - q^{15} - q^{16} + q^{17} + q^{20} + 2 q^{21} + q^{24} + 2 q^{27} + q^{28} - q^{30} + 4 q^{31}+ \cdots - 2 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1352Z)×\left(\mathbb{Z}/1352\mathbb{Z}\right)^\times.

nn 677677 10151015 11851185
χ(n)\chi(n) 1-1 1-1 ζ62-\zeta_{6}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
147.1
0.500000 0.866025i
0.500000 + 0.866025i
−0.500000 + 0.866025i 0.500000 0.866025i −0.500000 0.866025i −1.00000 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 0 0.500000 0.866025i
699.1 −0.500000 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i −1.00000 0.500000 0.866025i 0.500000 0.866025i 1.00000 0 0.500000 + 0.866025i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.h odd 2 1 CM by Q(26)\Q(\sqrt{-26})
13.c even 3 1 inner
104.p odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1352.1.p.a 2
8.d odd 2 1 1352.1.p.b 2
13.b even 2 1 1352.1.p.b 2
13.c even 3 1 104.1.h.b yes 1
13.c even 3 1 inner 1352.1.p.a 2
13.d odd 4 2 1352.1.n.a 4
13.e even 6 1 104.1.h.a 1
13.e even 6 1 1352.1.p.b 2
13.f odd 12 2 1352.1.g.a 2
13.f odd 12 2 1352.1.n.a 4
39.h odd 6 1 936.1.o.b 1
39.i odd 6 1 936.1.o.a 1
52.i odd 6 1 416.1.h.b 1
52.j odd 6 1 416.1.h.a 1
65.l even 6 1 2600.1.o.d 1
65.n even 6 1 2600.1.o.b 1
65.q odd 12 2 2600.1.b.a 2
65.r odd 12 2 2600.1.b.b 2
104.h odd 2 1 CM 1352.1.p.a 2
104.m even 4 2 1352.1.n.a 4
104.n odd 6 1 104.1.h.a 1
104.n odd 6 1 1352.1.p.b 2
104.p odd 6 1 104.1.h.b yes 1
104.p odd 6 1 inner 1352.1.p.a 2
104.r even 6 1 416.1.h.b 1
104.s even 6 1 416.1.h.a 1
104.u even 12 2 1352.1.g.a 2
104.u even 12 2 1352.1.n.a 4
156.p even 6 1 3744.1.o.b 1
156.r even 6 1 3744.1.o.a 1
208.bg odd 12 2 3328.1.c.a 2
208.bh even 12 2 3328.1.c.a 2
208.bi odd 12 2 3328.1.c.e 2
208.bj even 12 2 3328.1.c.e 2
312.ba even 6 1 936.1.o.a 1
312.bg odd 6 1 3744.1.o.b 1
312.bh odd 6 1 3744.1.o.a 1
312.bn even 6 1 936.1.o.b 1
520.bx odd 6 1 2600.1.o.d 1
520.cd odd 6 1 2600.1.o.b 1
520.cm even 12 2 2600.1.b.b 2
520.cs even 12 2 2600.1.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.1.h.a 1 13.e even 6 1
104.1.h.a 1 104.n odd 6 1
104.1.h.b yes 1 13.c even 3 1
104.1.h.b yes 1 104.p odd 6 1
416.1.h.a 1 52.j odd 6 1
416.1.h.a 1 104.s even 6 1
416.1.h.b 1 52.i odd 6 1
416.1.h.b 1 104.r even 6 1
936.1.o.a 1 39.i odd 6 1
936.1.o.a 1 312.ba even 6 1
936.1.o.b 1 39.h odd 6 1
936.1.o.b 1 312.bn even 6 1
1352.1.g.a 2 13.f odd 12 2
1352.1.g.a 2 104.u even 12 2
1352.1.n.a 4 13.d odd 4 2
1352.1.n.a 4 13.f odd 12 2
1352.1.n.a 4 104.m even 4 2
1352.1.n.a 4 104.u even 12 2
1352.1.p.a 2 1.a even 1 1 trivial
1352.1.p.a 2 13.c even 3 1 inner
1352.1.p.a 2 104.h odd 2 1 CM
1352.1.p.a 2 104.p odd 6 1 inner
1352.1.p.b 2 8.d odd 2 1
1352.1.p.b 2 13.b even 2 1
1352.1.p.b 2 13.e even 6 1
1352.1.p.b 2 104.n odd 6 1
2600.1.b.a 2 65.q odd 12 2
2600.1.b.a 2 520.cs even 12 2
2600.1.b.b 2 65.r odd 12 2
2600.1.b.b 2 520.cm even 12 2
2600.1.o.b 1 65.n even 6 1
2600.1.o.b 1 520.cd odd 6 1
2600.1.o.d 1 65.l even 6 1
2600.1.o.d 1 520.bx odd 6 1
3328.1.c.a 2 208.bg odd 12 2
3328.1.c.a 2 208.bh even 12 2
3328.1.c.e 2 208.bi odd 12 2
3328.1.c.e 2 208.bj even 12 2
3744.1.o.a 1 156.r even 6 1
3744.1.o.a 1 312.bh odd 6 1
3744.1.o.b 1 156.p even 6 1
3744.1.o.b 1 312.bg odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(1352,[χ])S_{1}^{\mathrm{new}}(1352, [\chi]):

T32T3+1 T_{3}^{2} - T_{3} + 1 Copy content Toggle raw display
T5+1 T_{5} + 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
33 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
55 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
77 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 (T2)2 (T - 2)^{2} Copy content Toggle raw display
3737 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
4747 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less