Properties

Label 1352.1.p.a.147.1
Level 13521352
Weight 11
Character 1352.147
Analytic conductor 0.6750.675
Analytic rank 00
Dimension 22
Projective image D3D_{3}
CM discriminant -104
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1352,1,Mod(147,1352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1352, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1352.147");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1352=23132 1352 = 2^{3} \cdot 13^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1352.p (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.6747358970800.674735897080
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 104)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.104.1
Artin image: C3×S3C_3\times S_3
Artin field: Galois closure of 6.0.190102016.3

Embedding invariants

Embedding label 147.1
Root 0.5000000.866025i0.500000 - 0.866025i of defining polynomial
Character χ\chi == 1352.147
Dual form 1352.1.p.a.699.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.500000+0.866025i)q2+(0.5000000.866025i)q3+(0.5000000.866025i)q41.00000q5+(0.500000+0.866025i)q6+(0.500000+0.866025i)q7+1.00000q8+(0.5000000.866025i)q101.00000q121.00000q14+(0.500000+0.866025i)q15+(0.500000+0.866025i)q16+(0.500000+0.866025i)q17+(0.500000+0.866025i)q20+1.00000q21+(0.5000000.866025i)q24+1.00000q27+(0.5000000.866025i)q28+(0.5000000.866025i)q30+2.00000q31+(0.5000000.866025i)q321.00000q34+(0.5000000.866025i)q35+(0.5000000.866025i)q371.00000q40+(0.500000+0.866025i)q42+(0.500000+0.866025i)q431.00000q47+(0.500000+0.866025i)q48+1.00000q51+(0.500000+0.866025i)q54+(0.500000+0.866025i)q56+1.00000q60+(1.00000+1.73205i)q62+1.00000q64+(0.5000000.866025i)q68+1.00000q70+(0.500000+0.866025i)q71+(0.500000+0.866025i)q74+(0.5000000.866025i)q80+(0.5000000.866025i)q81+(0.5000000.866025i)q84+(0.5000000.866025i)q851.00000q86+(1.000001.73205i)q93+(0.5000000.866025i)q941.00000q96+O(q100)q+(-0.500000 + 0.866025i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} -1.00000 q^{5} +(0.500000 + 0.866025i) q^{6} +(0.500000 + 0.866025i) q^{7} +1.00000 q^{8} +(0.500000 - 0.866025i) q^{10} -1.00000 q^{12} -1.00000 q^{14} +(-0.500000 + 0.866025i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(0.500000 + 0.866025i) q^{17} +(0.500000 + 0.866025i) q^{20} +1.00000 q^{21} +(0.500000 - 0.866025i) q^{24} +1.00000 q^{27} +(0.500000 - 0.866025i) q^{28} +(-0.500000 - 0.866025i) q^{30} +2.00000 q^{31} +(-0.500000 - 0.866025i) q^{32} -1.00000 q^{34} +(-0.500000 - 0.866025i) q^{35} +(0.500000 - 0.866025i) q^{37} -1.00000 q^{40} +(-0.500000 + 0.866025i) q^{42} +(0.500000 + 0.866025i) q^{43} -1.00000 q^{47} +(0.500000 + 0.866025i) q^{48} +1.00000 q^{51} +(-0.500000 + 0.866025i) q^{54} +(0.500000 + 0.866025i) q^{56} +1.00000 q^{60} +(-1.00000 + 1.73205i) q^{62} +1.00000 q^{64} +(0.500000 - 0.866025i) q^{68} +1.00000 q^{70} +(0.500000 + 0.866025i) q^{71} +(0.500000 + 0.866025i) q^{74} +(0.500000 - 0.866025i) q^{80} +(0.500000 - 0.866025i) q^{81} +(-0.500000 - 0.866025i) q^{84} +(-0.500000 - 0.866025i) q^{85} -1.00000 q^{86} +(1.00000 - 1.73205i) q^{93} +(0.500000 - 0.866025i) q^{94} -1.00000 q^{96} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq2+q3q42q5+q6+q7+2q8+q102q122q14q15q16+q17+q20+2q21+q24+2q27+q28q30+4q31+2q96+O(q100) 2 q - q^{2} + q^{3} - q^{4} - 2 q^{5} + q^{6} + q^{7} + 2 q^{8} + q^{10} - 2 q^{12} - 2 q^{14} - q^{15} - q^{16} + q^{17} + q^{20} + 2 q^{21} + q^{24} + 2 q^{27} + q^{28} - q^{30} + 4 q^{31}+ \cdots - 2 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1352Z)×\left(\mathbb{Z}/1352\mathbb{Z}\right)^\times.

nn 677677 10151015 11851185
χ(n)\chi(n) 1-1 1-1 e(16)e\left(\frac{1}{6}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.500000 + 0.866025i −0.500000 + 0.866025i
33 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
44 −0.500000 0.866025i −0.500000 0.866025i
55 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
66 0.500000 + 0.866025i 0.500000 + 0.866025i
77 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
88 1.00000 1.00000
99 0 0
1010 0.500000 0.866025i 0.500000 0.866025i
1111 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
1212 −1.00000 −1.00000
1313 0 0
1414 −1.00000 −1.00000
1515 −0.500000 + 0.866025i −0.500000 + 0.866025i
1616 −0.500000 + 0.866025i −0.500000 + 0.866025i
1717 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
1818 0 0
1919 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
2020 0.500000 + 0.866025i 0.500000 + 0.866025i
2121 1.00000 1.00000
2222 0 0
2323 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
2424 0.500000 0.866025i 0.500000 0.866025i
2525 0 0
2626 0 0
2727 1.00000 1.00000
2828 0.500000 0.866025i 0.500000 0.866025i
2929 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3030 −0.500000 0.866025i −0.500000 0.866025i
3131 2.00000 2.00000 1.00000 00
1.00000 00
3232 −0.500000 0.866025i −0.500000 0.866025i
3333 0 0
3434 −1.00000 −1.00000
3535 −0.500000 0.866025i −0.500000 0.866025i
3636 0 0
3737 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
3838 0 0
3939 0 0
4040 −1.00000 −1.00000
4141 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4242 −0.500000 + 0.866025i −0.500000 + 0.866025i
4343 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
4444 0 0
4545 0 0
4646 0 0
4747 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4848 0.500000 + 0.866025i 0.500000 + 0.866025i
4949 0 0
5050 0 0
5151 1.00000 1.00000
5252 0 0
5353 0 0 1.00000 00
−1.00000 π\pi
5454 −0.500000 + 0.866025i −0.500000 + 0.866025i
5555 0 0
5656 0.500000 + 0.866025i 0.500000 + 0.866025i
5757 0 0
5858 0 0
5959 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6060 1.00000 1.00000
6161 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6262 −1.00000 + 1.73205i −1.00000 + 1.73205i
6363 0 0
6464 1.00000 1.00000
6565 0 0
6666 0 0
6767 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6868 0.500000 0.866025i 0.500000 0.866025i
6969 0 0
7070 1.00000 1.00000
7171 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
7272 0 0
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0.500000 + 0.866025i 0.500000 + 0.866025i
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 0.500000 0.866025i 0.500000 0.866025i
8181 0.500000 0.866025i 0.500000 0.866025i
8282 0 0
8383 0 0 1.00000 00
−1.00000 π\pi
8484 −0.500000 0.866025i −0.500000 0.866025i
8585 −0.500000 0.866025i −0.500000 0.866025i
8686 −1.00000 −1.00000
8787 0 0
8888 0 0
8989 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
9090 0 0
9191 0 0
9292 0 0
9393 1.00000 1.73205i 1.00000 1.73205i
9494 0.500000 0.866025i 0.500000 0.866025i
9595 0 0
9696 −1.00000 −1.00000
9797 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
9898 0 0
9999 0 0
100100 0 0
101101 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
102102 −0.500000 + 0.866025i −0.500000 + 0.866025i
103103 0 0 1.00000 00
−1.00000 π\pi
104104 0 0
105105 −1.00000 −1.00000
106106 0 0
107107 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
108108 −0.500000 0.866025i −0.500000 0.866025i
109109 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
110110 0 0
111111 −0.500000 0.866025i −0.500000 0.866025i
112112 −1.00000 −1.00000
113113 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 −0.500000 + 0.866025i −0.500000 + 0.866025i
120120 −0.500000 + 0.866025i −0.500000 + 0.866025i
121121 −0.500000 0.866025i −0.500000 0.866025i
122122 0 0
123123 0 0
124124 −1.00000 1.73205i −1.00000 1.73205i
125125 1.00000 1.00000
126126 0 0
127127 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
128128 −0.500000 + 0.866025i −0.500000 + 0.866025i
129129 1.00000 1.00000
130130 0 0
131131 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
132132 0 0
133133 0 0
134134 0 0
135135 −1.00000 −1.00000
136136 0.500000 + 0.866025i 0.500000 + 0.866025i
137137 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
138138 0 0
139139 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
140140 −0.500000 + 0.866025i −0.500000 + 0.866025i
141141 −0.500000 + 0.866025i −0.500000 + 0.866025i
142142 −1.00000 −1.00000
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 −1.00000 −1.00000
149149 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
150150 0 0
151151 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
152152 0 0
153153 0 0
154154 0 0
155155 −2.00000 −2.00000
156156 0 0
157157 0 0 1.00000 00
−1.00000 π\pi
158158 0 0
159159 0 0
160160 0.500000 + 0.866025i 0.500000 + 0.866025i
161161 0 0
162162 0.500000 + 0.866025i 0.500000 + 0.866025i
163163 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
164164 0 0
165165 0 0
166166 0 0
167167 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
168168 1.00000 1.00000
169169 0 0
170170 1.00000 1.00000
171171 0 0
172172 0.500000 0.866025i 0.500000 0.866025i
173173 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 0 0
185185 −0.500000 + 0.866025i −0.500000 + 0.866025i
186186 1.00000 + 1.73205i 1.00000 + 1.73205i
187187 0 0
188188 0.500000 + 0.866025i 0.500000 + 0.866025i
189189 0.500000 + 0.866025i 0.500000 + 0.866025i
190190 0 0
191191 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
192192 0.500000 0.866025i 0.500000 0.866025i
193193 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
194194 0 0
195195 0 0
196196 0 0
197197 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
198198 0 0
199199 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 −0.500000 0.866025i −0.500000 0.866025i
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0.500000 0.866025i 0.500000 0.866025i
211211 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
212212 0 0
213213 1.00000 1.00000
214214 −1.00000 1.73205i −1.00000 1.73205i
215215 −0.500000 0.866025i −0.500000 0.866025i
216216 1.00000 1.00000
217217 1.00000 + 1.73205i 1.00000 + 1.73205i
218218 0.500000 0.866025i 0.500000 0.866025i
219219 0 0
220220 0 0
221221 0 0
222222 1.00000 1.00000
223223 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
224224 0.500000 0.866025i 0.500000 0.866025i
225225 0 0
226226 2.00000 2.00000
227227 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
228228 0 0
229229 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
230230 0 0
231231 0 0
232232 0 0
233233 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
234234 0 0
235235 1.00000 1.00000
236236 0 0
237237 0 0
238238 −0.500000 0.866025i −0.500000 0.866025i
239239 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
240240 −0.500000 0.866025i −0.500000 0.866025i
241241 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
242242 1.00000 1.00000
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 2.00000 2.00000
249249 0 0
250250 −0.500000 + 0.866025i −0.500000 + 0.866025i
251251 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
252252 0 0
253253 0 0
254254 0 0
255255 −1.00000 −1.00000
256256 −0.500000 0.866025i −0.500000 0.866025i
257257 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
258258 −0.500000 + 0.866025i −0.500000 + 0.866025i
259259 1.00000 1.00000
260260 0 0
261261 0 0
262262 0.500000 0.866025i 0.500000 0.866025i
263263 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
270270 0.500000 0.866025i 0.500000 0.866025i
271271 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
272272 −1.00000 −1.00000
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
278278 −1.00000 −1.00000
279279 0 0
280280 −0.500000 0.866025i −0.500000 0.866025i
281281 0 0 1.00000 00
−1.00000 π\pi
282282 −0.500000 0.866025i −0.500000 0.866025i
283283 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
284284 0.500000 0.866025i 0.500000 0.866025i
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 0 0
290290 0 0
291291 0 0
292292 0 0
293293 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
294294 0 0
295295 0 0
296296 0.500000 0.866025i 0.500000 0.866025i
297297 0 0
298298 2.00000 2.00000
299299 0 0
300300 0 0
301301 −0.500000 + 0.866025i −0.500000 + 0.866025i
302302 0.500000 0.866025i 0.500000 0.866025i
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 1.00000 1.73205i 1.00000 1.73205i
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
314314 0 0
315315 0 0
316316 0 0
317317 2.00000 2.00000 1.00000 00
1.00000 00
318318 0 0
319319 0 0
320320 −1.00000 −1.00000
321321 1.00000 + 1.73205i 1.00000 + 1.73205i
322322 0 0
323323 0 0
324324 −1.00000 −1.00000
325325 0 0
326326 0 0
327327 −0.500000 + 0.866025i −0.500000 + 0.866025i
328328 0 0
329329 −0.500000 0.866025i −0.500000 0.866025i
330330 0 0
331331 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
332332 0 0
333333 0 0
334334 −1.00000 1.73205i −1.00000 1.73205i
335335 0 0
336336 −0.500000 + 0.866025i −0.500000 + 0.866025i
337337 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
338338 0 0
339339 −2.00000 −2.00000
340340 −0.500000 + 0.866025i −0.500000 + 0.866025i
341341 0 0
342342 0 0
343343 1.00000 1.00000
344344 0.500000 + 0.866025i 0.500000 + 0.866025i
345345 0 0
346346 0 0
347347 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
348348 0 0
349349 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
350350 0 0
351351 0 0
352352 0 0
353353 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
354354 0 0
355355 −0.500000 0.866025i −0.500000 0.866025i
356356 0 0
357357 0.500000 + 0.866025i 0.500000 + 0.866025i
358358 0.500000 + 0.866025i 0.500000 + 0.866025i
359359 2.00000 2.00000 1.00000 00
1.00000 00
360360 0 0
361361 −0.500000 + 0.866025i −0.500000 + 0.866025i
362362 0 0
363363 −1.00000 −1.00000
364364 0 0
365365 0 0
366366 0 0
367367 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
368368 0 0
369369 0 0
370370 −0.500000 0.866025i −0.500000 0.866025i
371371 0 0
372372 −2.00000 −2.00000
373373 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
374374 0 0
375375 0.500000 0.866025i 0.500000 0.866025i
376376 −1.00000 −1.00000
377377 0 0
378378 −1.00000 −1.00000
379379 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
380380 0 0
381381 0 0
382382 0 0
383383 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
384384 0.500000 + 0.866025i 0.500000 + 0.866025i
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0 0 1.00000 00
−1.00000 π\pi
390390 0 0
391391 0 0
392392 0 0
393393 −0.500000 + 0.866025i −0.500000 + 0.866025i
394394 0.500000 + 0.866025i 0.500000 + 0.866025i
395395 0 0
396396 0 0
397397 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
398398 0 0
399399 0 0
400400 0 0
401401 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
402402 0 0
403403 0 0
404404 0 0
405405 −0.500000 + 0.866025i −0.500000 + 0.866025i
406406 0 0
407407 0 0
408408 1.00000 1.00000
409409 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 1.00000 1.00000
418418 0 0
419419 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
420420 0.500000 + 0.866025i 0.500000 + 0.866025i
421421 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
422422 0.500000 + 0.866025i 0.500000 + 0.866025i
423423 0 0
424424 0 0
425425 0 0
426426 −0.500000 + 0.866025i −0.500000 + 0.866025i
427427 0 0
428428 2.00000 2.00000
429429 0 0
430430 1.00000 1.00000
431431 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
432432 −0.500000 + 0.866025i −0.500000 + 0.866025i
433433 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
434434 −2.00000 −2.00000
435435 0 0
436436 0.500000 + 0.866025i 0.500000 + 0.866025i
437437 0 0
438438 0 0
439439 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
440440 0 0
441441 0 0
442442 0 0
443443 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
444444 −0.500000 + 0.866025i −0.500000 + 0.866025i
445445 0 0
446446 0.500000 + 0.866025i 0.500000 + 0.866025i
447447 −2.00000 −2.00000
448448 0.500000 + 0.866025i 0.500000 + 0.866025i
449449 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
450450 0 0
451451 0 0
452452 −1.00000 + 1.73205i −1.00000 + 1.73205i
453453 −0.500000 + 0.866025i −0.500000 + 0.866025i
454454 0 0
455455 0 0
456456 0 0
457457 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
458458 0.500000 0.866025i 0.500000 0.866025i
459459 0.500000 + 0.866025i 0.500000 + 0.866025i
460460 0 0
461461 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
462462 0 0
463463 2.00000 2.00000 1.00000 00
1.00000 00
464464 0 0
465465 −1.00000 + 1.73205i −1.00000 + 1.73205i
466466 0.500000 0.866025i 0.500000 0.866025i
467467 2.00000 2.00000 1.00000 00
1.00000 00
468468 0 0
469469 0 0
470470 −0.500000 + 0.866025i −0.500000 + 0.866025i
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 1.00000 1.00000
477477 0 0
478478 0.500000 0.866025i 0.500000 0.866025i
479479 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
480480 1.00000 1.00000
481481 0 0
482482 0 0
483483 0 0
484484 −0.500000 + 0.866025i −0.500000 + 0.866025i
485485 0 0
486486 0 0
487487 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
488488 0 0
489489 0 0
490490 0 0
491491 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 −1.00000 + 1.73205i −1.00000 + 1.73205i
497497 −0.500000 + 0.866025i −0.500000 + 0.866025i
498498 0 0
499499 0 0 1.00000 00
−1.00000 π\pi
500500 −0.500000 0.866025i −0.500000 0.866025i
501501 1.00000 + 1.73205i 1.00000 + 1.73205i
502502 2.00000 2.00000
503503 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
510510 0.500000 0.866025i 0.500000 0.866025i
511511 0 0
512512 1.00000 1.00000
513513 0 0
514514 0.500000 + 0.866025i 0.500000 + 0.866025i
515515 0 0
516516 −0.500000 0.866025i −0.500000 0.866025i
517517 0 0
518518 −0.500000 + 0.866025i −0.500000 + 0.866025i
519519 0 0
520520 0 0
521521 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
522522 0 0
523523 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
524524 0.500000 + 0.866025i 0.500000 + 0.866025i
525525 0 0
526526 0 0
527527 1.00000 + 1.73205i 1.00000 + 1.73205i
528528 0 0
529529 −0.500000 0.866025i −0.500000 0.866025i
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 1.00000 1.73205i 1.00000 1.73205i
536536 0 0
537537 −0.500000 0.866025i −0.500000 0.866025i
538538 0 0
539539 0 0
540540 0.500000 + 0.866025i 0.500000 + 0.866025i
541541 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
542542 0.500000 + 0.866025i 0.500000 + 0.866025i
543543 0 0
544544 0.500000 0.866025i 0.500000 0.866025i
545545 1.00000 1.00000
546546 0 0
547547 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0.500000 + 0.866025i 0.500000 + 0.866025i
556556 0.500000 0.866025i 0.500000 0.866025i
557557 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
558558 0 0
559559 0 0
560560 1.00000 1.00000
561561 0 0
562562 0 0
563563 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
564564 1.00000 1.00000
565565 1.00000 + 1.73205i 1.00000 + 1.73205i
566566 −1.00000 1.73205i −1.00000 1.73205i
567567 1.00000 1.00000
568568 0.500000 + 0.866025i 0.500000 + 0.866025i
569569 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
570570 0 0
571571 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 0 0 1.00000 00
−1.00000 π\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 −1.00000 −1.00000
587587 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
588588 0 0
589589 0 0
590590 0 0
591591 −0.500000 0.866025i −0.500000 0.866025i
592592 0.500000 + 0.866025i 0.500000 + 0.866025i
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0.500000 0.866025i 0.500000 0.866025i
596596 −1.00000 + 1.73205i −1.00000 + 1.73205i
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
602602 −0.500000 0.866025i −0.500000 0.866025i
603603 0 0
604604 0.500000 + 0.866025i 0.500000 + 0.866025i
605605 0.500000 + 0.866025i 0.500000 + 0.866025i
606606 0 0
607607 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 1.00000 + 1.73205i 1.00000 + 1.73205i
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −1.00000 −1.00000
626626 0.500000 0.866025i 0.500000 0.866025i
627627 0 0
628628 0 0
629629 1.00000 1.00000
630630 0 0
631631 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
632632 0 0
633633 −0.500000 0.866025i −0.500000 0.866025i
634634 −1.00000 + 1.73205i −1.00000 + 1.73205i
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0.500000 0.866025i 0.500000 0.866025i
641641 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
642642 −2.00000 −2.00000
643643 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
644644 0 0
645645 −1.00000 −1.00000
646646 0 0
647647 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
648648 0.500000 0.866025i 0.500000 0.866025i
649649 0 0
650650 0 0
651651 2.00000 2.00000
652652 0 0
653653 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
654654 −0.500000 0.866025i −0.500000 0.866025i
655655 1.00000 1.00000
656656 0 0
657657 0 0
658658 1.00000 1.00000
659659 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
660660 0 0
661661 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 2.00000 2.00000
669669 −0.500000 0.866025i −0.500000 0.866025i
670670 0 0
671671 0 0
672672 −0.500000 0.866025i −0.500000 0.866025i
673673 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
674674 0.500000 0.866025i 0.500000 0.866025i
675675 0 0
676676 0 0
677677 0 0 1.00000 00
−1.00000 π\pi
678678 1.00000 1.73205i 1.00000 1.73205i
679679 0 0
680680 −0.500000 0.866025i −0.500000 0.866025i
681681 0 0
682682 0 0
683683 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
684684 0 0
685685 0 0
686686 −0.500000 + 0.866025i −0.500000 + 0.866025i
687687 −0.500000 + 0.866025i −0.500000 + 0.866025i
688688 −1.00000 −1.00000
689689 0 0
690690 0 0
691691 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
692692 0 0
693693 0 0
694694 −1.00000 −1.00000
695695 −0.500000 0.866025i −0.500000 0.866025i
696696 0 0
697697 0 0
698698 0.500000 + 0.866025i 0.500000 + 0.866025i
699699 −0.500000 + 0.866025i −0.500000 + 0.866025i
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0 0
705705 0.500000 0.866025i 0.500000 0.866025i
706706 0 0
707707 0 0
708708 0 0
709709 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
710710 1.00000 1.00000
711711 0 0
712712 0 0
713713 0 0
714714 −1.00000 −1.00000
715715 0 0
716716 −1.00000 −1.00000
717717 −0.500000 + 0.866025i −0.500000 + 0.866025i
718718 −1.00000 + 1.73205i −1.00000 + 1.73205i
719719 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
720720 0 0
721721 0 0
722722 −0.500000 0.866025i −0.500000 0.866025i
723723 0 0
724724 0 0
725725 0 0
726726 0.500000 0.866025i 0.500000 0.866025i
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 1.00000 1.00000
730730 0 0
731731 −0.500000 + 0.866025i −0.500000 + 0.866025i
732732 0 0
733733 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
740740 1.00000 1.00000
741741 0 0
742742 0 0
743743 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
744744 1.00000 1.73205i 1.00000 1.73205i
745745 1.00000 + 1.73205i 1.00000 + 1.73205i
746746 0 0
747747 0 0
748748 0 0
749749 −2.00000 −2.00000
750750 0.500000 + 0.866025i 0.500000 + 0.866025i
751751 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
752752 0.500000 0.866025i 0.500000 0.866025i
753753 −2.00000 −2.00000
754754 0 0
755755 1.00000 1.00000
756756 0.500000 0.866025i 0.500000 0.866025i
757757 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
762762 0 0
763763 −0.500000 0.866025i −0.500000 0.866025i
764764 0 0
765765 0 0
766766 −1.00000 −1.00000
767767 0 0
768768 −1.00000 −1.00000
769769 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
770770 0 0
771771 −0.500000 0.866025i −0.500000 0.866025i
772772 0 0
773773 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
774774 0 0
775775 0 0
776776 0 0
777777 0.500000 0.866025i 0.500000 0.866025i
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 −0.500000 0.866025i −0.500000 0.866025i
787787 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
788788 −1.00000 −1.00000
789789 0 0
790790 0 0
791791 1.00000 1.73205i 1.00000 1.73205i
792792 0 0
793793 0 0
794794 2.00000 2.00000
795795 0 0
796796 0 0
797797 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
798798 0 0
799799 −0.500000 0.866025i −0.500000 0.866025i
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
810810 −0.500000 0.866025i −0.500000 0.866025i
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 −0.500000 0.866025i −0.500000 0.866025i
814814 0 0
815815 0 0
816816 −0.500000 + 0.866025i −0.500000 + 0.866025i
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
822822 0 0
823823 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 −0.500000 + 0.866025i −0.500000 + 0.866025i
835835 1.00000 1.73205i 1.00000 1.73205i
836836 0 0
837837 2.00000 2.00000
838838 0.500000 + 0.866025i 0.500000 + 0.866025i
839839 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
840840 −1.00000 −1.00000
841841 −0.500000 0.866025i −0.500000 0.866025i
842842 0.500000 0.866025i 0.500000 0.866025i
843843 0 0
844844 −1.00000 −1.00000
845845 0 0
846846 0 0
847847 0.500000 0.866025i 0.500000 0.866025i
848848 0 0
849849 1.00000 + 1.73205i 1.00000 + 1.73205i
850850 0 0
851851 0 0
852852 −0.500000 0.866025i −0.500000 0.866025i
853853 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
854854 0 0
855855 0 0
856856 −1.00000 + 1.73205i −1.00000 + 1.73205i
857857 2.00000 2.00000 1.00000 00
1.00000 00
858858 0 0
859859 2.00000 2.00000 1.00000 00
1.00000 00
860860 −0.500000 + 0.866025i −0.500000 + 0.866025i
861861 0 0
862862 0.500000 + 0.866025i 0.500000 + 0.866025i
863863 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
864864 −0.500000 0.866025i −0.500000 0.866025i
865865 0 0
866866 −1.00000 −1.00000
867867 0 0
868868 1.00000 1.73205i 1.00000 1.73205i
869869 0 0
870870 0 0
871871 0 0
872872 −1.00000 −1.00000
873873 0 0
874874 0 0
875875 0.500000 + 0.866025i 0.500000 + 0.866025i
876876 0 0
877877 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
878878 0 0
879879 1.00000 1.00000
880880 0 0
881881 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
882882 0 0
883883 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
884884 0 0
885885 0 0
886886 0.500000 0.866025i 0.500000 0.866025i
887887 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
888888 −0.500000 0.866025i −0.500000 0.866025i
889889 0 0
890890 0 0
891891 0 0
892892 −1.00000 −1.00000
893893 0 0
894894 1.00000 1.73205i 1.00000 1.73205i
895895 −0.500000 + 0.866025i −0.500000 + 0.866025i
896896 −1.00000 −1.00000
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0.500000 + 0.866025i 0.500000 + 0.866025i
904904 −1.00000 1.73205i −1.00000 1.73205i
905905 0 0
906906 −0.500000 0.866025i −0.500000 0.866025i
907907 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0.500000 + 0.866025i 0.500000 + 0.866025i
917917 −0.500000 0.866025i −0.500000 0.866025i
918918 −1.00000 −1.00000
919919 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
920920 0 0
921921 0 0
922922 −1.00000 −1.00000
923923 0 0
924924 0 0
925925 0 0
926926 −1.00000 + 1.73205i −1.00000 + 1.73205i
927927 0 0
928928 0 0
929929 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
930930 −1.00000 1.73205i −1.00000 1.73205i
931931 0 0
932932 0.500000 + 0.866025i 0.500000 + 0.866025i
933933 0 0
934934 −1.00000 + 1.73205i −1.00000 + 1.73205i
935935 0 0
936936 0 0
937937 2.00000 2.00000 1.00000 00
1.00000 00
938938 0 0
939939 −0.500000 + 0.866025i −0.500000 + 0.866025i
940940 −0.500000 0.866025i −0.500000 0.866025i
941941 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
942942 0 0
943943 0 0
944944 0 0
945945 −0.500000 0.866025i −0.500000 0.866025i
946946 0 0
947947 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
948948 0 0
949949 0 0
950950 0 0
951951 1.00000 1.73205i 1.00000 1.73205i
952952 −0.500000 + 0.866025i −0.500000 + 0.866025i
953953 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
954954 0 0
955955 0 0
956956 0.500000 + 0.866025i 0.500000 + 0.866025i
957957 0 0
958958 0.500000 + 0.866025i 0.500000 + 0.866025i
959959 0 0
960960 −0.500000 + 0.866025i −0.500000 + 0.866025i
961961 3.00000 3.00000
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
968968 −0.500000 0.866025i −0.500000 0.866025i
969969 0 0
970970 0 0
971971 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
972972 0 0
973973 −0.500000 + 0.866025i −0.500000 + 0.866025i
974974 2.00000 2.00000
975975 0 0
976976 0 0
977977 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0.500000 + 0.866025i 0.500000 + 0.866025i
983983 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
984984 0 0
985985 −0.500000 + 0.866025i −0.500000 + 0.866025i
986986 0 0
987987 −1.00000 −1.00000
988988 0 0
989989 0 0
990990 0 0
991991 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
992992 −1.00000 1.73205i −1.00000 1.73205i
993993 0 0
994994 −0.500000 0.866025i −0.500000 0.866025i
995995 0 0
996996 0 0
997997 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
998998 0 0
999999 0.500000 0.866025i 0.500000 0.866025i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1352.1.p.a.147.1 2
8.3 odd 2 1352.1.p.b.147.1 2
13.2 odd 12 1352.1.n.a.315.1 4
13.3 even 3 inner 1352.1.p.a.699.1 2
13.4 even 6 104.1.h.a.51.1 1
13.5 odd 4 1352.1.n.a.867.2 4
13.6 odd 12 1352.1.g.a.339.1 2
13.7 odd 12 1352.1.g.a.339.2 2
13.8 odd 4 1352.1.n.a.867.1 4
13.9 even 3 104.1.h.b.51.1 yes 1
13.10 even 6 1352.1.p.b.699.1 2
13.11 odd 12 1352.1.n.a.315.2 4
13.12 even 2 1352.1.p.b.147.1 2
39.17 odd 6 936.1.o.b.883.1 1
39.35 odd 6 936.1.o.a.883.1 1
52.35 odd 6 416.1.h.a.207.1 1
52.43 odd 6 416.1.h.b.207.1 1
65.4 even 6 2600.1.o.d.51.1 1
65.9 even 6 2600.1.o.b.51.1 1
65.17 odd 12 2600.1.b.b.1299.1 2
65.22 odd 12 2600.1.b.a.1299.2 2
65.43 odd 12 2600.1.b.b.1299.2 2
65.48 odd 12 2600.1.b.a.1299.1 2
104.3 odd 6 1352.1.p.b.699.1 2
104.11 even 12 1352.1.n.a.315.1 4
104.19 even 12 1352.1.g.a.339.2 2
104.35 odd 6 104.1.h.a.51.1 1
104.43 odd 6 104.1.h.b.51.1 yes 1
104.51 odd 2 CM 1352.1.p.a.147.1 2
104.59 even 12 1352.1.g.a.339.1 2
104.61 even 6 416.1.h.b.207.1 1
104.67 even 12 1352.1.n.a.315.2 4
104.69 even 6 416.1.h.a.207.1 1
104.75 odd 6 inner 1352.1.p.a.699.1 2
104.83 even 4 1352.1.n.a.867.1 4
104.99 even 4 1352.1.n.a.867.2 4
156.35 even 6 3744.1.o.b.2287.1 1
156.95 even 6 3744.1.o.a.2287.1 1
208.35 odd 12 3328.1.c.a.3327.2 2
208.43 odd 12 3328.1.c.e.3327.1 2
208.61 even 12 3328.1.c.e.3327.1 2
208.69 even 12 3328.1.c.a.3327.2 2
208.139 odd 12 3328.1.c.a.3327.1 2
208.147 odd 12 3328.1.c.e.3327.2 2
208.165 even 12 3328.1.c.e.3327.2 2
208.173 even 12 3328.1.c.a.3327.1 2
312.35 even 6 936.1.o.b.883.1 1
312.173 odd 6 3744.1.o.b.2287.1 1
312.251 even 6 936.1.o.a.883.1 1
312.269 odd 6 3744.1.o.a.2287.1 1
520.43 even 12 2600.1.b.a.1299.1 2
520.139 odd 6 2600.1.o.d.51.1 1
520.147 even 12 2600.1.b.a.1299.2 2
520.243 even 12 2600.1.b.b.1299.2 2
520.347 even 12 2600.1.b.b.1299.1 2
520.459 odd 6 2600.1.o.b.51.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.1.h.a.51.1 1 13.4 even 6
104.1.h.a.51.1 1 104.35 odd 6
104.1.h.b.51.1 yes 1 13.9 even 3
104.1.h.b.51.1 yes 1 104.43 odd 6
416.1.h.a.207.1 1 52.35 odd 6
416.1.h.a.207.1 1 104.69 even 6
416.1.h.b.207.1 1 52.43 odd 6
416.1.h.b.207.1 1 104.61 even 6
936.1.o.a.883.1 1 39.35 odd 6
936.1.o.a.883.1 1 312.251 even 6
936.1.o.b.883.1 1 39.17 odd 6
936.1.o.b.883.1 1 312.35 even 6
1352.1.g.a.339.1 2 13.6 odd 12
1352.1.g.a.339.1 2 104.59 even 12
1352.1.g.a.339.2 2 13.7 odd 12
1352.1.g.a.339.2 2 104.19 even 12
1352.1.n.a.315.1 4 13.2 odd 12
1352.1.n.a.315.1 4 104.11 even 12
1352.1.n.a.315.2 4 13.11 odd 12
1352.1.n.a.315.2 4 104.67 even 12
1352.1.n.a.867.1 4 13.8 odd 4
1352.1.n.a.867.1 4 104.83 even 4
1352.1.n.a.867.2 4 13.5 odd 4
1352.1.n.a.867.2 4 104.99 even 4
1352.1.p.a.147.1 2 1.1 even 1 trivial
1352.1.p.a.147.1 2 104.51 odd 2 CM
1352.1.p.a.699.1 2 13.3 even 3 inner
1352.1.p.a.699.1 2 104.75 odd 6 inner
1352.1.p.b.147.1 2 8.3 odd 2
1352.1.p.b.147.1 2 13.12 even 2
1352.1.p.b.699.1 2 13.10 even 6
1352.1.p.b.699.1 2 104.3 odd 6
2600.1.b.a.1299.1 2 65.48 odd 12
2600.1.b.a.1299.1 2 520.43 even 12
2600.1.b.a.1299.2 2 65.22 odd 12
2600.1.b.a.1299.2 2 520.147 even 12
2600.1.b.b.1299.1 2 65.17 odd 12
2600.1.b.b.1299.1 2 520.347 even 12
2600.1.b.b.1299.2 2 65.43 odd 12
2600.1.b.b.1299.2 2 520.243 even 12
2600.1.o.b.51.1 1 65.9 even 6
2600.1.o.b.51.1 1 520.459 odd 6
2600.1.o.d.51.1 1 65.4 even 6
2600.1.o.d.51.1 1 520.139 odd 6
3328.1.c.a.3327.1 2 208.139 odd 12
3328.1.c.a.3327.1 2 208.173 even 12
3328.1.c.a.3327.2 2 208.35 odd 12
3328.1.c.a.3327.2 2 208.69 even 12
3328.1.c.e.3327.1 2 208.43 odd 12
3328.1.c.e.3327.1 2 208.61 even 12
3328.1.c.e.3327.2 2 208.147 odd 12
3328.1.c.e.3327.2 2 208.165 even 12
3744.1.o.a.2287.1 1 156.95 even 6
3744.1.o.a.2287.1 1 312.269 odd 6
3744.1.o.b.2287.1 1 156.35 even 6
3744.1.o.b.2287.1 1 312.173 odd 6