Properties

Label 1352.1.n.a.315.1
Level $1352$
Weight $1$
Character 1352.315
Analytic conductor $0.675$
Analytic rank $0$
Dimension $4$
Projective image $D_{3}$
CM discriminant -104
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1352,1,Mod(315,1352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1352, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1352.315");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1352 = 2^{3} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1352.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.674735897080\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.104.1
Artin image: $S_3\times C_{12}$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{72} - \cdots)\)

Embedding invariants

Embedding label 315.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1352.315
Dual form 1352.1.n.a.867.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.500000 - 0.866025i) q^{4} +1.00000i q^{5} +(-0.866025 - 0.500000i) q^{6} +(0.866025 + 0.500000i) q^{7} +1.00000i q^{8} +(-0.500000 - 0.866025i) q^{10} +1.00000 q^{12} -1.00000 q^{14} +(-0.866025 + 0.500000i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-0.500000 + 0.866025i) q^{17} +(0.866025 + 0.500000i) q^{20} +1.00000i q^{21} +(-0.866025 + 0.500000i) q^{24} +1.00000 q^{27} +(0.866025 - 0.500000i) q^{28} +(0.500000 - 0.866025i) q^{30} -2.00000i q^{31} +(0.866025 + 0.500000i) q^{32} -1.00000i q^{34} +(-0.500000 + 0.866025i) q^{35} +(-0.866025 + 0.500000i) q^{37} -1.00000 q^{40} +(-0.500000 - 0.866025i) q^{42} +(-0.500000 + 0.866025i) q^{43} -1.00000i q^{47} +(0.500000 - 0.866025i) q^{48} -1.00000 q^{51} +(-0.866025 + 0.500000i) q^{54} +(-0.500000 + 0.866025i) q^{56} +1.00000i q^{60} +(1.00000 + 1.73205i) q^{62} -1.00000 q^{64} +(0.500000 + 0.866025i) q^{68} -1.00000i q^{70} +(-0.866025 - 0.500000i) q^{71} +(0.500000 - 0.866025i) q^{74} +(0.866025 - 0.500000i) q^{80} +(0.500000 + 0.866025i) q^{81} +(0.866025 + 0.500000i) q^{84} +(-0.866025 - 0.500000i) q^{85} -1.00000i q^{86} +(1.73205 - 1.00000i) q^{93} +(0.500000 + 0.866025i) q^{94} +1.00000i q^{96} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 2 q^{4} - 2 q^{10} + 4 q^{12} - 4 q^{14} - 2 q^{16} - 2 q^{17} + 4 q^{27} + 2 q^{30} - 2 q^{35} - 4 q^{40} - 2 q^{42} - 2 q^{43} + 2 q^{48} - 4 q^{51} - 2 q^{56} + 4 q^{62} - 4 q^{64} + 2 q^{68}+ \cdots + 2 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1352\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1185\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(3\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(4\) 0.500000 0.866025i 0.500000 0.866025i
\(5\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) −0.866025 0.500000i −0.866025 0.500000i
\(7\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(8\) 1.00000i 1.00000i
\(9\) 0 0
\(10\) −0.500000 0.866025i −0.500000 0.866025i
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 1.00000 1.00000
\(13\) 0 0
\(14\) −1.00000 −1.00000
\(15\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(16\) −0.500000 0.866025i −0.500000 0.866025i
\(17\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(20\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(21\) 1.00000i 1.00000i
\(22\) 0 0
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000 1.00000
\(28\) 0.866025 0.500000i 0.866025 0.500000i
\(29\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(30\) 0.500000 0.866025i 0.500000 0.866025i
\(31\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(32\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(33\) 0 0
\(34\) 1.00000i 1.00000i
\(35\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(36\) 0 0
\(37\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −1.00000 −1.00000
\(41\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(42\) −0.500000 0.866025i −0.500000 0.866025i
\(43\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(48\) 0.500000 0.866025i 0.500000 0.866025i
\(49\) 0 0
\(50\) 0 0
\(51\) −1.00000 −1.00000
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(55\) 0 0
\(56\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 1.00000i 1.00000i
\(61\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(63\) 0 0
\(64\) −1.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(68\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(69\) 0 0
\(70\) 1.00000i 1.00000i
\(71\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0.500000 0.866025i 0.500000 0.866025i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0.866025 0.500000i 0.866025 0.500000i
\(81\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(85\) −0.866025 0.500000i −0.866025 0.500000i
\(86\) 1.00000i 1.00000i
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.73205 1.00000i 1.73205 1.00000i
\(94\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(95\) 0 0
\(96\) 1.00000i 1.00000i
\(97\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(102\) 0.866025 0.500000i 0.866025 0.500000i
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) −1.00000 −1.00000
\(106\) 0 0
\(107\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(108\) 0.500000 0.866025i 0.500000 0.866025i
\(109\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(110\) 0 0
\(111\) −0.866025 0.500000i −0.866025 0.500000i
\(112\) 1.00000i 1.00000i
\(113\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(120\) −0.500000 0.866025i −0.500000 0.866025i
\(121\) 0.500000 0.866025i 0.500000 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) −1.73205 1.00000i −1.73205 1.00000i
\(125\) 1.00000i 1.00000i
\(126\) 0 0
\(127\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(128\) 0.866025 0.500000i 0.866025 0.500000i
\(129\) −1.00000 −1.00000
\(130\) 0 0
\(131\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.00000i 1.00000i
\(136\) −0.866025 0.500000i −0.866025 0.500000i
\(137\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(138\) 0 0
\(139\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(140\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(141\) 0.866025 0.500000i 0.866025 0.500000i
\(142\) 1.00000 1.00000
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 1.00000i 1.00000i
\(149\) 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(150\) 0 0
\(151\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.00000 2.00000
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(161\) 0 0
\(162\) −0.866025 0.500000i −0.866025 0.500000i
\(163\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i \(-0.166667\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(168\) −1.00000 −1.00000
\(169\) 0 0
\(170\) 1.00000 1.00000
\(171\) 0 0
\(172\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(173\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.500000 0.866025i −0.500000 0.866025i
\(186\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(187\) 0 0
\(188\) −0.866025 0.500000i −0.866025 0.500000i
\(189\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) −0.500000 0.866025i −0.500000 0.866025i
\(193\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(198\) 0 0
\(199\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0.866025 0.500000i 0.866025 0.500000i
\(211\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 0 0
\(213\) 1.00000i 1.00000i
\(214\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(215\) −0.866025 0.500000i −0.866025 0.500000i
\(216\) 1.00000i 1.00000i
\(217\) 1.00000 1.73205i 1.00000 1.73205i
\(218\) −0.500000 0.866025i −0.500000 0.866025i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 1.00000 1.00000
\(223\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(224\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(225\) 0 0
\(226\) 2.00000i 2.00000i
\(227\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(228\) 0 0
\(229\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(234\) 0 0
\(235\) 1.00000 1.00000
\(236\) 0 0
\(237\) 0 0
\(238\) 0.500000 0.866025i 0.500000 0.866025i
\(239\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(240\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(241\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(242\) 1.00000i 1.00000i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 2.00000 2.00000
\(249\) 0 0
\(250\) −0.500000 0.866025i −0.500000 0.866025i
\(251\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 1.00000i 1.00000i
\(256\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(257\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(258\) 0.866025 0.500000i 0.866025 0.500000i
\(259\) −1.00000 −1.00000
\(260\) 0 0
\(261\) 0 0
\(262\) 0.866025 0.500000i 0.866025 0.500000i
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(270\) −0.500000 0.866025i −0.500000 0.866025i
\(271\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(272\) 1.00000 1.00000
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 1.00000i 1.00000i
\(279\) 0 0
\(280\) −0.866025 0.500000i −0.866025 0.500000i
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(283\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(284\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −0.500000 0.866025i −0.500000 0.866025i
\(297\) 0 0
\(298\) −2.00000 −2.00000
\(299\) 0 0
\(300\) 0 0
\(301\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(302\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.00000i 1.00000i
\(321\) 1.00000 1.73205i 1.00000 1.73205i
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000 1.00000
\(325\) 0 0
\(326\) 0 0
\(327\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(328\) 0 0
\(329\) 0.500000 0.866025i 0.500000 0.866025i
\(330\) 0 0
\(331\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(335\) 0 0
\(336\) 0.866025 0.500000i 0.866025 0.500000i
\(337\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(338\) 0 0
\(339\) −2.00000 −2.00000
\(340\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000i 1.00000i
\(344\) −0.866025 0.500000i −0.866025 0.500000i
\(345\) 0 0
\(346\) 0 0
\(347\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(348\) 0 0
\(349\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(354\) 0 0
\(355\) 0.500000 0.866025i 0.500000 0.866025i
\(356\) 0 0
\(357\) −0.866025 0.500000i −0.866025 0.500000i
\(358\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(359\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(362\) 0 0
\(363\) 1.00000 1.00000
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(371\) 0 0
\(372\) 2.00000i 2.00000i
\(373\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(376\) 1.00000 1.00000
\(377\) 0 0
\(378\) −1.00000 −1.00000
\(379\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −0.500000 0.866025i −0.500000 0.866025i
\(394\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(395\) 0 0
\(396\) 0 0
\(397\) −1.73205 1.00000i −1.73205 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 0.500000i \(-0.833333\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(406\) 0 0
\(407\) 0 0
\(408\) 1.00000i 1.00000i
\(409\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.00000 1.00000
\(418\) 0 0
\(419\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(420\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(421\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(422\) −0.866025 0.500000i −0.866025 0.500000i
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(427\) 0 0
\(428\) −2.00000 −2.00000
\(429\) 0 0
\(430\) 1.00000 1.00000
\(431\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(432\) −0.500000 0.866025i −0.500000 0.866025i
\(433\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(434\) 2.00000i 2.00000i
\(435\) 0 0
\(436\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(444\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(445\) 0 0
\(446\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(447\) 2.00000i 2.00000i
\(448\) −0.866025 0.500000i −0.866025 0.500000i
\(449\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(453\) 0.866025 0.500000i 0.866025 0.500000i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(458\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(459\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(460\) 0 0
\(461\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(462\) 0 0
\(463\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(466\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(467\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 1.00000i 1.00000i
\(477\) 0 0
\(478\) −0.500000 0.866025i −0.500000 0.866025i
\(479\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(480\) −1.00000 −1.00000
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −0.500000 0.866025i −0.500000 0.866025i
\(485\) 0 0
\(486\) 0 0
\(487\) 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(497\) −0.500000 0.866025i −0.500000 0.866025i
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(501\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(502\) 2.00000i 2.00000i
\(503\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i \(0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(510\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(511\) 0 0
\(512\) 1.00000i 1.00000i
\(513\) 0 0
\(514\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(515\) 0 0
\(516\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(517\) 0 0
\(518\) 0.866025 0.500000i 0.866025 0.500000i
\(519\) 0 0
\(520\) 0 0
\(521\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 0 0
\(523\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(524\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(525\) 0 0
\(526\) 0 0
\(527\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(528\) 0 0
\(529\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.73205 1.00000i 1.73205 1.00000i
\(536\) 0 0
\(537\) 0.500000 0.866025i 0.500000 0.866025i
\(538\) 0 0
\(539\) 0 0
\(540\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(541\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(542\) 0.500000 0.866025i 0.500000 0.866025i
\(543\) 0 0
\(544\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(545\) −1.00000 −1.00000
\(546\) 0 0
\(547\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0.500000 0.866025i 0.500000 0.866025i
\(556\) −0.500000 0.866025i −0.500000 0.866025i
\(557\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 1.00000 1.00000
\(561\) 0 0
\(562\) 0 0
\(563\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(564\) 1.00000i 1.00000i
\(565\) −1.73205 1.00000i −1.73205 1.00000i
\(566\) −1.73205 1.00000i −1.73205 1.00000i
\(567\) 1.00000i 1.00000i
\(568\) 0.500000 0.866025i 0.500000 0.866025i
\(569\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −1.00000 −1.00000
\(587\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(592\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) −0.500000 0.866025i −0.500000 0.866025i
\(596\) 1.73205 1.00000i 1.73205 1.00000i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0.500000 0.866025i 0.500000 0.866025i
\(603\) 0 0
\(604\) −0.866025 0.500000i −0.866025 0.500000i
\(605\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(606\) 0 0
\(607\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i \(0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 1.00000 1.73205i 1.00000 1.73205i
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1.00000 −1.00000
\(626\) 0.866025 0.500000i 0.866025 0.500000i
\(627\) 0 0
\(628\) 0 0
\(629\) 1.00000i 1.00000i
\(630\) 0 0
\(631\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(634\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(641\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(642\) 2.00000i 2.00000i
\(643\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(644\) 0 0
\(645\) 1.00000i 1.00000i
\(646\) 0 0
\(647\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(648\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(649\) 0 0
\(650\) 0 0
\(651\) 2.00000 2.00000
\(652\) 0 0
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0.500000 0.866025i 0.500000 0.866025i
\(655\) 1.00000i 1.00000i
\(656\) 0 0
\(657\) 0 0
\(658\) 1.00000i 1.00000i
\(659\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 0 0
\(661\) 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i \(-0.166667\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 2.00000i 2.00000i
\(669\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(670\) 0 0
\(671\) 0 0
\(672\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(673\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(674\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 1.73205 1.00000i 1.73205 1.00000i
\(679\) 0 0
\(680\) 0.500000 0.866025i 0.500000 0.866025i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(687\) 0.866025 0.500000i 0.866025 0.500000i
\(688\) 1.00000 1.00000
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 1.00000i 1.00000i
\(695\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(696\) 0 0
\(697\) 0 0
\(698\) 0.500000 0.866025i 0.500000 0.866025i
\(699\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.73205 1.00000i −1.73205 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 0.500000i \(-0.833333\pi\)
\(710\) 1.00000i 1.00000i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 1.00000 1.00000
\(715\) 0 0
\(716\) −1.00000 −1.00000
\(717\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(718\) −1.00000 1.73205i −1.00000 1.73205i
\(719\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −0.866025 0.500000i −0.866025 0.500000i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) −0.500000 0.866025i −0.500000 0.866025i
\(732\) 0 0
\(733\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(740\) −1.00000 −1.00000
\(741\) 0 0
\(742\) 0 0
\(743\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(744\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(745\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.00000i 2.00000i
\(750\) 0.500000 0.866025i 0.500000 0.866025i
\(751\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(753\) 2.00000 2.00000
\(754\) 0 0
\(755\) 1.00000 1.00000
\(756\) 0.866025 0.500000i 0.866025 0.500000i
\(757\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(762\) 0 0
\(763\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(764\) 0 0
\(765\) 0 0
\(766\) 1.00000 1.00000
\(767\) 0 0
\(768\) −1.00000 −1.00000
\(769\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(770\) 0 0
\(771\) 0.500000 0.866025i 0.500000 0.866025i
\(772\) 0 0
\(773\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −0.500000 0.866025i −0.500000 0.866025i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(787\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(788\) 1.00000i 1.00000i
\(789\) 0 0
\(790\) 0 0
\(791\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(792\) 0 0
\(793\) 0 0
\(794\) 2.00000 2.00000
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(798\) 0 0
\(799\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(810\) 0.500000 0.866025i 0.500000 0.866025i
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) −0.866025 0.500000i −0.866025 0.500000i
\(814\) 0 0
\(815\) 0 0
\(816\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(822\) 0 0
\(823\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(835\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(836\) 0 0
\(837\) 2.00000i 2.00000i
\(838\) −0.866025 0.500000i −0.866025 0.500000i
\(839\) −1.73205 1.00000i −1.73205 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 0.500000i \(-0.833333\pi\)
\(840\) 1.00000i 1.00000i
\(841\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(842\) −0.500000 0.866025i −0.500000 0.866025i
\(843\) 0 0
\(844\) 1.00000 1.00000
\(845\) 0 0
\(846\) 0 0
\(847\) 0.866025 0.500000i 0.866025 0.500000i
\(848\) 0 0
\(849\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(850\) 0 0
\(851\) 0 0
\(852\) −0.866025 0.500000i −0.866025 0.500000i
\(853\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 1.73205 1.00000i 1.73205 1.00000i
\(857\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(860\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(861\) 0 0
\(862\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(863\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(864\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(865\) 0 0
\(866\) 1.00000i 1.00000i
\(867\) 0 0
\(868\) −1.00000 1.73205i −1.00000 1.73205i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −1.00000 −1.00000
\(873\) 0 0
\(874\) 0 0
\(875\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(876\) 0 0
\(877\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(878\) 0 0
\(879\) 1.00000i 1.00000i
\(880\) 0 0
\(881\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0.866025 0.500000i 0.866025 0.500000i
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) 0.500000 0.866025i 0.500000 0.866025i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 1.00000i 1.00000i
\(893\) 0 0
\(894\) −1.00000 1.73205i −1.00000 1.73205i
\(895\) 0.866025 0.500000i 0.866025 0.500000i
\(896\) 1.00000 1.00000
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −0.866025 0.500000i −0.866025 0.500000i
\(904\) −1.73205 1.00000i −1.73205 1.00000i
\(905\) 0 0
\(906\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(907\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −0.866025 0.500000i −0.866025 0.500000i
\(917\) −0.866025 0.500000i −0.866025 0.500000i
\(918\) 1.00000i 1.00000i
\(919\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.00000 1.00000
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −1.00000 1.73205i −1.00000 1.73205i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(930\) −1.73205 1.00000i −1.73205 1.00000i
\(931\) 0 0
\(932\) 0.500000 0.866025i 0.500000 0.866025i
\(933\) 0 0
\(934\) 1.73205 1.00000i 1.73205 1.00000i
\(935\) 0 0
\(936\) 0 0
\(937\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(938\) 0 0
\(939\) −0.500000 0.866025i −0.500000 0.866025i
\(940\) 0.500000 0.866025i 0.500000 0.866025i
\(941\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(946\) 0 0
\(947\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 1.73205 1.00000i 1.73205 1.00000i
\(952\) −0.500000 0.866025i −0.500000 0.866025i
\(953\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(957\) 0 0
\(958\) 0.500000 0.866025i 0.500000 0.866025i
\(959\) 0 0
\(960\) 0.866025 0.500000i 0.866025 0.500000i
\(961\) −3.00000 −3.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(968\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(969\) 0 0
\(970\) 0 0
\(971\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(972\) 0 0
\(973\) 0.866025 0.500000i 0.866025 0.500000i
\(974\) −2.00000 −2.00000
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(983\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(984\) 0 0
\(985\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(986\) 0 0
\(987\) 1.00000 1.00000
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 1.00000 1.73205i 1.00000 1.73205i
\(993\) 0 0
\(994\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(998\) 0 0
\(999\) −0.866025 + 0.500000i −0.866025 + 0.500000i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1352.1.n.a.315.1 4
8.3 odd 2 inner 1352.1.n.a.315.2 4
13.2 odd 12 104.1.h.a.51.1 1
13.3 even 3 1352.1.g.a.339.1 2
13.4 even 6 inner 1352.1.n.a.867.1 4
13.5 odd 4 1352.1.p.b.699.1 2
13.6 odd 12 1352.1.p.b.147.1 2
13.7 odd 12 1352.1.p.a.147.1 2
13.8 odd 4 1352.1.p.a.699.1 2
13.9 even 3 inner 1352.1.n.a.867.2 4
13.10 even 6 1352.1.g.a.339.2 2
13.11 odd 12 104.1.h.b.51.1 yes 1
13.12 even 2 inner 1352.1.n.a.315.2 4
39.2 even 12 936.1.o.b.883.1 1
39.11 even 12 936.1.o.a.883.1 1
52.11 even 12 416.1.h.a.207.1 1
52.15 even 12 416.1.h.b.207.1 1
65.2 even 12 2600.1.b.b.1299.1 2
65.24 odd 12 2600.1.o.b.51.1 1
65.28 even 12 2600.1.b.b.1299.2 2
65.37 even 12 2600.1.b.a.1299.2 2
65.54 odd 12 2600.1.o.d.51.1 1
65.63 even 12 2600.1.b.a.1299.1 2
104.3 odd 6 1352.1.g.a.339.2 2
104.11 even 12 104.1.h.a.51.1 1
104.19 even 12 1352.1.p.a.147.1 2
104.35 odd 6 inner 1352.1.n.a.867.1 4
104.37 odd 12 416.1.h.b.207.1 1
104.43 odd 6 inner 1352.1.n.a.867.2 4
104.51 odd 2 CM 1352.1.n.a.315.1 4
104.59 even 12 1352.1.p.b.147.1 2
104.67 even 12 104.1.h.b.51.1 yes 1
104.75 odd 6 1352.1.g.a.339.1 2
104.83 even 4 1352.1.p.a.699.1 2
104.93 odd 12 416.1.h.a.207.1 1
104.99 even 4 1352.1.p.b.699.1 2
156.11 odd 12 3744.1.o.b.2287.1 1
156.119 odd 12 3744.1.o.a.2287.1 1
208.11 even 12 3328.1.c.a.3327.1 2
208.37 odd 12 3328.1.c.e.3327.2 2
208.67 even 12 3328.1.c.e.3327.2 2
208.93 odd 12 3328.1.c.a.3327.1 2
208.115 even 12 3328.1.c.a.3327.2 2
208.141 odd 12 3328.1.c.e.3327.1 2
208.171 even 12 3328.1.c.e.3327.1 2
208.197 odd 12 3328.1.c.a.3327.2 2
312.11 odd 12 936.1.o.b.883.1 1
312.197 even 12 3744.1.o.b.2287.1 1
312.245 even 12 3744.1.o.a.2287.1 1
312.275 odd 12 936.1.o.a.883.1 1
520.67 odd 12 2600.1.b.a.1299.2 2
520.219 even 12 2600.1.o.d.51.1 1
520.323 odd 12 2600.1.b.b.1299.2 2
520.379 even 12 2600.1.o.b.51.1 1
520.427 odd 12 2600.1.b.b.1299.1 2
520.483 odd 12 2600.1.b.a.1299.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.1.h.a.51.1 1 13.2 odd 12
104.1.h.a.51.1 1 104.11 even 12
104.1.h.b.51.1 yes 1 13.11 odd 12
104.1.h.b.51.1 yes 1 104.67 even 12
416.1.h.a.207.1 1 52.11 even 12
416.1.h.a.207.1 1 104.93 odd 12
416.1.h.b.207.1 1 52.15 even 12
416.1.h.b.207.1 1 104.37 odd 12
936.1.o.a.883.1 1 39.11 even 12
936.1.o.a.883.1 1 312.275 odd 12
936.1.o.b.883.1 1 39.2 even 12
936.1.o.b.883.1 1 312.11 odd 12
1352.1.g.a.339.1 2 13.3 even 3
1352.1.g.a.339.1 2 104.75 odd 6
1352.1.g.a.339.2 2 13.10 even 6
1352.1.g.a.339.2 2 104.3 odd 6
1352.1.n.a.315.1 4 1.1 even 1 trivial
1352.1.n.a.315.1 4 104.51 odd 2 CM
1352.1.n.a.315.2 4 8.3 odd 2 inner
1352.1.n.a.315.2 4 13.12 even 2 inner
1352.1.n.a.867.1 4 13.4 even 6 inner
1352.1.n.a.867.1 4 104.35 odd 6 inner
1352.1.n.a.867.2 4 13.9 even 3 inner
1352.1.n.a.867.2 4 104.43 odd 6 inner
1352.1.p.a.147.1 2 13.7 odd 12
1352.1.p.a.147.1 2 104.19 even 12
1352.1.p.a.699.1 2 13.8 odd 4
1352.1.p.a.699.1 2 104.83 even 4
1352.1.p.b.147.1 2 13.6 odd 12
1352.1.p.b.147.1 2 104.59 even 12
1352.1.p.b.699.1 2 13.5 odd 4
1352.1.p.b.699.1 2 104.99 even 4
2600.1.b.a.1299.1 2 65.63 even 12
2600.1.b.a.1299.1 2 520.483 odd 12
2600.1.b.a.1299.2 2 65.37 even 12
2600.1.b.a.1299.2 2 520.67 odd 12
2600.1.b.b.1299.1 2 65.2 even 12
2600.1.b.b.1299.1 2 520.427 odd 12
2600.1.b.b.1299.2 2 65.28 even 12
2600.1.b.b.1299.2 2 520.323 odd 12
2600.1.o.b.51.1 1 65.24 odd 12
2600.1.o.b.51.1 1 520.379 even 12
2600.1.o.d.51.1 1 65.54 odd 12
2600.1.o.d.51.1 1 520.219 even 12
3328.1.c.a.3327.1 2 208.11 even 12
3328.1.c.a.3327.1 2 208.93 odd 12
3328.1.c.a.3327.2 2 208.115 even 12
3328.1.c.a.3327.2 2 208.197 odd 12
3328.1.c.e.3327.1 2 208.141 odd 12
3328.1.c.e.3327.1 2 208.171 even 12
3328.1.c.e.3327.2 2 208.37 odd 12
3328.1.c.e.3327.2 2 208.67 even 12
3744.1.o.a.2287.1 1 156.119 odd 12
3744.1.o.a.2287.1 1 312.245 even 12
3744.1.o.b.2287.1 1 156.11 odd 12
3744.1.o.b.2287.1 1 312.197 even 12