L(s) = 1 | − 1.41i·2-s − 2.00·4-s − 4.32i·5-s + 2.82i·8-s − 6.11·10-s − 4.15·13-s + 4.00·16-s − 4.35·19-s + 8.65i·20-s − 1.55i·23-s − 13.7·25-s + 5.87i·26-s + 10.2·31-s − 5.65i·32-s − 8.07·37-s + 6.16i·38-s + ⋯ |
L(s) = 1 | − 0.999i·2-s − 1.00·4-s − 1.93i·5-s + 1.00i·8-s − 1.93·10-s − 1.15·13-s + 1.00·16-s − 1.00·19-s + 1.93i·20-s − 0.323i·23-s − 2.74·25-s + 1.15i·26-s + 1.84·31-s − 1.00i·32-s − 1.32·37-s + 1.00i·38-s + ⋯ |
Λ(s)=(=(1368s/2ΓC(s)L(s)−iΛ(2−s)
Λ(s)=(=(1368s/2ΓC(s+1/2)L(s)−iΛ(1−s)
Degree: |
2 |
Conductor: |
1368
= 23⋅32⋅19
|
Sign: |
−i
|
Analytic conductor: |
10.9235 |
Root analytic conductor: |
3.30507 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1368(379,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1368, ( :1/2), −i)
|
Particular Values
L(1) |
≈ |
0.4562519596 |
L(21) |
≈ |
0.4562519596 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+1.41iT |
| 3 | 1 |
| 19 | 1+4.35T |
good | 5 | 1+4.32iT−5T2 |
| 7 | 1−7T2 |
| 11 | 1+11T2 |
| 13 | 1+4.15T+13T2 |
| 17 | 1+17T2 |
| 23 | 1+1.55iT−23T2 |
| 29 | 1+29T2 |
| 31 | 1−10.2T+31T2 |
| 37 | 1+8.07T+37T2 |
| 41 | 1−12.3iT−41T2 |
| 43 | 1+8.71T+43T2 |
| 47 | 1+7.10iT−47T2 |
| 53 | 1+53T2 |
| 59 | 1+2.82iT−59T2 |
| 61 | 1−61T2 |
| 67 | 1−67T2 |
| 71 | 1+71T2 |
| 73 | 1+8.71T+73T2 |
| 79 | 1−14.1T+79T2 |
| 83 | 1+83T2 |
| 89 | 1+11.3iT−89T2 |
| 97 | 1−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.980887530064943296208838819984, −8.484378516264037348432768644731, −7.80604097105995035548927458280, −6.31095464701282956399213403489, −5.02270909955010252979871011808, −4.83325807295692173920753371230, −3.87857896447073635315498801478, −2.46066577083743670762932046404, −1.40176069244099492316005153129, −0.18890245370169336375534339194,
2.31291787234767368585972327546, 3.32685850671220338687995147555, 4.30530776517581053640086842033, 5.43051921842333032957900690151, 6.37740478575496866121812422003, 6.90655042028833515328307090098, 7.51003541078299752915522088937, 8.341281833193170729711527303137, 9.398275790711519551742976708899, 10.29406552428233469191472194390