Properties

Label 1368.2.e.c
Level 13681368
Weight 22
Character orbit 1368.e
Analytic conductor 10.92410.924
Analytic rank 00
Dimension 88
CM discriminant -456
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1368,2,Mod(379,1368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1368.379");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1368=233219 1368 = 2^{3} \cdot 3^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1368.e (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.923534996510.9235349965
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.4919453024256.11
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x812x6+96x4+248x2+900 x^{8} - 12x^{6} + 96x^{4} + 248x^{2} + 900 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 25 2^{5}
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q22q4β2q52β1q8+β3q10+β6q13+4q16β4q19+2β2q20β7q23+(2β45)q25++7β1q98+O(q100) q + \beta_1 q^{2} - 2 q^{4} - \beta_{2} q^{5} - 2 \beta_1 q^{8} + \beta_{3} q^{10} + \beta_{6} q^{13} + 4 q^{16} - \beta_{4} q^{19} + 2 \beta_{2} q^{20} - \beta_{7} q^{23} + ( - 2 \beta_{4} - 5) q^{25}+ \cdots + 7 \beta_1 q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q16q4+32q1640q25+56q4964q64+O(q100) 8 q - 16 q^{4} + 32 q^{16} - 40 q^{25} + 56 q^{49} - 64 q^{64}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x812x6+96x4+248x2+900 x^{8} - 12x^{6} + 96x^{4} + 248x^{2} + 900 : Copy content Toggle raw display

β1\beta_{1}== (ν710ν5+86ν3+520ν)/600 ( \nu^{7} - 10\nu^{5} + 86\nu^{3} + 520\nu ) / 600 Copy content Toggle raw display
β2\beta_{2}== (ν65ν4+136ν2+150)/300 ( \nu^{6} - 5\nu^{4} + 136\nu^{2} + 150 ) / 300 Copy content Toggle raw display
β3\beta_{3}== (ν7+10ν586ν3+80ν)/300 ( -\nu^{7} + 10\nu^{5} - 86\nu^{3} + 80\nu ) / 300 Copy content Toggle raw display
β4\beta_{4}== (ν6+5ν4+14ν2600)/150 ( -\nu^{6} + 5\nu^{4} + 14\nu^{2} - 600 ) / 150 Copy content Toggle raw display
β5\beta_{5}== (ν7+12ν566ν3428ν)/120 ( -\nu^{7} + 12\nu^{5} - 66\nu^{3} - 428\nu ) / 120 Copy content Toggle raw display
β6\beta_{6}== (2ν735ν5+322ν3250ν)/300 ( 2\nu^{7} - 35\nu^{5} + 322\nu^{3} - 250\nu ) / 300 Copy content Toggle raw display
β7\beta_{7}== (8ν6+115ν4938ν2750)/300 ( -8\nu^{6} + 115\nu^{4} - 938\nu^{2} - 750 ) / 300 Copy content Toggle raw display
ν\nu== (β3+2β1)/2 ( \beta_{3} + 2\beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== β4+2β2+3 \beta_{4} + 2\beta_{2} + 3 Copy content Toggle raw display
ν3\nu^{3}== β6+3β5+β3+13β1 \beta_{6} + 3\beta_{5} + \beta_{3} + 13\beta_1 Copy content Toggle raw display
ν4\nu^{4}== 4β72β4+28β212 4\beta_{7} - 2\beta_{4} + 28\beta_{2} - 12 Copy content Toggle raw display
ν5\nu^{5}== 10β6+30β533β3+124β1 -10\beta_{6} + 30\beta_{5} - 33\beta_{3} + 124\beta_1 Copy content Toggle raw display
ν6\nu^{6}== 20β7146β4+168β2618 20\beta_{7} - 146\beta_{4} + 168\beta_{2} - 618 Copy content Toggle raw display
ν7\nu^{7}== 186β6+42β5676β3+202β1 -186\beta_{6} + 42\beta_{5} - 676\beta_{3} + 202\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1368Z)×\left(\mathbb{Z}/1368\mathbb{Z}\right)^\times.

nn 343343 685685 10091009 12171217
χ(n)\chi(n) 1-1 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
379.1
−3.05923 1.41421i
−0.800688 1.41421i
0.800688 1.41421i
3.05923 1.41421i
3.05923 + 1.41421i
0.800688 + 1.41421i
−0.800688 + 1.41421i
−3.05923 + 1.41421i
1.41421i 0 −2.00000 4.32641i 0 0 2.82843i 0 −6.11846
379.2 1.41421i 0 −2.00000 1.13234i 0 0 2.82843i 0 −1.60138
379.3 1.41421i 0 −2.00000 1.13234i 0 0 2.82843i 0 1.60138
379.4 1.41421i 0 −2.00000 4.32641i 0 0 2.82843i 0 6.11846
379.5 1.41421i 0 −2.00000 4.32641i 0 0 2.82843i 0 6.11846
379.6 1.41421i 0 −2.00000 1.13234i 0 0 2.82843i 0 1.60138
379.7 1.41421i 0 −2.00000 1.13234i 0 0 2.82843i 0 −1.60138
379.8 1.41421i 0 −2.00000 4.32641i 0 0 2.82843i 0 −6.11846
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 379.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
456.l odd 2 1 CM by Q(114)\Q(\sqrt{-114})
3.b odd 2 1 inner
8.d odd 2 1 inner
19.b odd 2 1 inner
24.f even 2 1 inner
57.d even 2 1 inner
152.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1368.2.e.c 8
3.b odd 2 1 inner 1368.2.e.c 8
4.b odd 2 1 5472.2.e.c 8
8.b even 2 1 5472.2.e.c 8
8.d odd 2 1 inner 1368.2.e.c 8
12.b even 2 1 5472.2.e.c 8
19.b odd 2 1 inner 1368.2.e.c 8
24.f even 2 1 inner 1368.2.e.c 8
24.h odd 2 1 5472.2.e.c 8
57.d even 2 1 inner 1368.2.e.c 8
76.d even 2 1 5472.2.e.c 8
152.b even 2 1 inner 1368.2.e.c 8
152.g odd 2 1 5472.2.e.c 8
228.b odd 2 1 5472.2.e.c 8
456.l odd 2 1 CM 1368.2.e.c 8
456.p even 2 1 5472.2.e.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1368.2.e.c 8 1.a even 1 1 trivial
1368.2.e.c 8 3.b odd 2 1 inner
1368.2.e.c 8 8.d odd 2 1 inner
1368.2.e.c 8 19.b odd 2 1 inner
1368.2.e.c 8 24.f even 2 1 inner
1368.2.e.c 8 57.d even 2 1 inner
1368.2.e.c 8 152.b even 2 1 inner
1368.2.e.c 8 456.l odd 2 1 CM
5472.2.e.c 8 4.b odd 2 1
5472.2.e.c 8 8.b even 2 1
5472.2.e.c 8 12.b even 2 1
5472.2.e.c 8 24.h odd 2 1
5472.2.e.c 8 76.d even 2 1
5472.2.e.c 8 152.g odd 2 1
5472.2.e.c 8 228.b odd 2 1
5472.2.e.c 8 456.p even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1368,[χ])S_{2}^{\mathrm{new}}(1368, [\chi]):

T54+20T52+24 T_{5}^{4} + 20T_{5}^{2} + 24 Copy content Toggle raw display
T7 T_{7} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+2)4 (T^{2} + 2)^{4} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 (T4+20T2+24)2 (T^{4} + 20 T^{2} + 24)^{2} Copy content Toggle raw display
77 T8 T^{8} Copy content Toggle raw display
1111 T8 T^{8} Copy content Toggle raw display
1313 (T452T2+600)2 (T^{4} - 52 T^{2} + 600)^{2} Copy content Toggle raw display
1717 T8 T^{8} Copy content Toggle raw display
1919 (T219)4 (T^{2} - 19)^{4} Copy content Toggle raw display
2323 (T4+92T2+216)2 (T^{4} + 92 T^{2} + 216)^{2} Copy content Toggle raw display
2929 T8 T^{8} Copy content Toggle raw display
3131 (T4124T2+1944)2 (T^{4} - 124 T^{2} + 1944)^{2} Copy content Toggle raw display
3737 (T4148T2+5400)2 (T^{4} - 148 T^{2} + 5400)^{2} Copy content Toggle raw display
4141 (T2+152)4 (T^{2} + 152)^{4} Copy content Toggle raw display
4343 (T276)4 (T^{2} - 76)^{4} Copy content Toggle raw display
4747 (T4+188T2+6936)2 (T^{4} + 188 T^{2} + 6936)^{2} Copy content Toggle raw display
5353 T8 T^{8} Copy content Toggle raw display
5959 (T2+8)4 (T^{2} + 8)^{4} Copy content Toggle raw display
6161 T8 T^{8} Copy content Toggle raw display
6767 T8 T^{8} Copy content Toggle raw display
7171 T8 T^{8} Copy content Toggle raw display
7373 (T276)4 (T^{2} - 76)^{4} Copy content Toggle raw display
7979 (T4316T2+23064)2 (T^{4} - 316 T^{2} + 23064)^{2} Copy content Toggle raw display
8383 T8 T^{8} Copy content Toggle raw display
8989 (T2+128)4 (T^{2} + 128)^{4} Copy content Toggle raw display
9797 T8 T^{8} Copy content Toggle raw display
show more
show less