Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1368,2,Mod(379,1368)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1368, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1368.379");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1368.e (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 8.0.4919453024256.11 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
379.1 |
|
− | 1.41421i | 0 | −2.00000 | − | 4.32641i | 0 | 0 | 2.82843i | 0 | −6.11846 | ||||||||||||||||||||||||||||||||||||||||
379.2 | − | 1.41421i | 0 | −2.00000 | − | 1.13234i | 0 | 0 | 2.82843i | 0 | −1.60138 | |||||||||||||||||||||||||||||||||||||||||
379.3 | − | 1.41421i | 0 | −2.00000 | 1.13234i | 0 | 0 | 2.82843i | 0 | 1.60138 | ||||||||||||||||||||||||||||||||||||||||||
379.4 | − | 1.41421i | 0 | −2.00000 | 4.32641i | 0 | 0 | 2.82843i | 0 | 6.11846 | ||||||||||||||||||||||||||||||||||||||||||
379.5 | 1.41421i | 0 | −2.00000 | − | 4.32641i | 0 | 0 | − | 2.82843i | 0 | 6.11846 | |||||||||||||||||||||||||||||||||||||||||
379.6 | 1.41421i | 0 | −2.00000 | − | 1.13234i | 0 | 0 | − | 2.82843i | 0 | 1.60138 | |||||||||||||||||||||||||||||||||||||||||
379.7 | 1.41421i | 0 | −2.00000 | 1.13234i | 0 | 0 | − | 2.82843i | 0 | −1.60138 | ||||||||||||||||||||||||||||||||||||||||||
379.8 | 1.41421i | 0 | −2.00000 | 4.32641i | 0 | 0 | − | 2.82843i | 0 | −6.11846 | ||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
456.l | odd | 2 | 1 | CM by |
3.b | odd | 2 | 1 | inner |
8.d | odd | 2 | 1 | inner |
19.b | odd | 2 | 1 | inner |
24.f | even | 2 | 1 | inner |
57.d | even | 2 | 1 | inner |
152.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1368.2.e.c | ✓ | 8 |
3.b | odd | 2 | 1 | inner | 1368.2.e.c | ✓ | 8 |
4.b | odd | 2 | 1 | 5472.2.e.c | 8 | ||
8.b | even | 2 | 1 | 5472.2.e.c | 8 | ||
8.d | odd | 2 | 1 | inner | 1368.2.e.c | ✓ | 8 |
12.b | even | 2 | 1 | 5472.2.e.c | 8 | ||
19.b | odd | 2 | 1 | inner | 1368.2.e.c | ✓ | 8 |
24.f | even | 2 | 1 | inner | 1368.2.e.c | ✓ | 8 |
24.h | odd | 2 | 1 | 5472.2.e.c | 8 | ||
57.d | even | 2 | 1 | inner | 1368.2.e.c | ✓ | 8 |
76.d | even | 2 | 1 | 5472.2.e.c | 8 | ||
152.b | even | 2 | 1 | inner | 1368.2.e.c | ✓ | 8 |
152.g | odd | 2 | 1 | 5472.2.e.c | 8 | ||
228.b | odd | 2 | 1 | 5472.2.e.c | 8 | ||
456.l | odd | 2 | 1 | CM | 1368.2.e.c | ✓ | 8 |
456.p | even | 2 | 1 | 5472.2.e.c | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1368.2.e.c | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
1368.2.e.c | ✓ | 8 | 3.b | odd | 2 | 1 | inner |
1368.2.e.c | ✓ | 8 | 8.d | odd | 2 | 1 | inner |
1368.2.e.c | ✓ | 8 | 19.b | odd | 2 | 1 | inner |
1368.2.e.c | ✓ | 8 | 24.f | even | 2 | 1 | inner |
1368.2.e.c | ✓ | 8 | 57.d | even | 2 | 1 | inner |
1368.2.e.c | ✓ | 8 | 152.b | even | 2 | 1 | inner |
1368.2.e.c | ✓ | 8 | 456.l | odd | 2 | 1 | CM |
5472.2.e.c | 8 | 4.b | odd | 2 | 1 | ||
5472.2.e.c | 8 | 8.b | even | 2 | 1 | ||
5472.2.e.c | 8 | 12.b | even | 2 | 1 | ||
5472.2.e.c | 8 | 24.h | odd | 2 | 1 | ||
5472.2.e.c | 8 | 76.d | even | 2 | 1 | ||
5472.2.e.c | 8 | 152.g | odd | 2 | 1 | ||
5472.2.e.c | 8 | 228.b | odd | 2 | 1 | ||
5472.2.e.c | 8 | 456.p | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|