Properties

Label 1368.2.e.c
Level $1368$
Weight $2$
Character orbit 1368.e
Analytic conductor $10.924$
Analytic rank $0$
Dimension $8$
CM discriminant -456
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1368,2,Mod(379,1368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1368.379");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1368.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.9235349965\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.4919453024256.11
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 12x^{6} + 96x^{4} + 248x^{2} + 900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - 2 q^{4} - \beta_{2} q^{5} - 2 \beta_1 q^{8} + \beta_{3} q^{10} + \beta_{6} q^{13} + 4 q^{16} - \beta_{4} q^{19} + 2 \beta_{2} q^{20} - \beta_{7} q^{23} + ( - 2 \beta_{4} - 5) q^{25}+ \cdots + 7 \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{4} + 32 q^{16} - 40 q^{25} + 56 q^{49} - 64 q^{64}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 12x^{6} + 96x^{4} + 248x^{2} + 900 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{7} - 10\nu^{5} + 86\nu^{3} + 520\nu ) / 600 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} - 5\nu^{4} + 136\nu^{2} + 150 ) / 300 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{7} + 10\nu^{5} - 86\nu^{3} + 80\nu ) / 300 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{6} + 5\nu^{4} + 14\nu^{2} - 600 ) / 150 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{7} + 12\nu^{5} - 66\nu^{3} - 428\nu ) / 120 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 2\nu^{7} - 35\nu^{5} + 322\nu^{3} - 250\nu ) / 300 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -8\nu^{6} + 115\nu^{4} - 938\nu^{2} - 750 ) / 300 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 2\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} + 2\beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{6} + 3\beta_{5} + \beta_{3} + 13\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{7} - 2\beta_{4} + 28\beta_{2} - 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -10\beta_{6} + 30\beta_{5} - 33\beta_{3} + 124\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 20\beta_{7} - 146\beta_{4} + 168\beta_{2} - 618 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -186\beta_{6} + 42\beta_{5} - 676\beta_{3} + 202\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1368\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(685\) \(1009\) \(1217\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
379.1
−3.05923 1.41421i
−0.800688 1.41421i
0.800688 1.41421i
3.05923 1.41421i
3.05923 + 1.41421i
0.800688 + 1.41421i
−0.800688 + 1.41421i
−3.05923 + 1.41421i
1.41421i 0 −2.00000 4.32641i 0 0 2.82843i 0 −6.11846
379.2 1.41421i 0 −2.00000 1.13234i 0 0 2.82843i 0 −1.60138
379.3 1.41421i 0 −2.00000 1.13234i 0 0 2.82843i 0 1.60138
379.4 1.41421i 0 −2.00000 4.32641i 0 0 2.82843i 0 6.11846
379.5 1.41421i 0 −2.00000 4.32641i 0 0 2.82843i 0 6.11846
379.6 1.41421i 0 −2.00000 1.13234i 0 0 2.82843i 0 1.60138
379.7 1.41421i 0 −2.00000 1.13234i 0 0 2.82843i 0 −1.60138
379.8 1.41421i 0 −2.00000 4.32641i 0 0 2.82843i 0 −6.11846
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 379.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
456.l odd 2 1 CM by \(\Q(\sqrt{-114}) \)
3.b odd 2 1 inner
8.d odd 2 1 inner
19.b odd 2 1 inner
24.f even 2 1 inner
57.d even 2 1 inner
152.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1368.2.e.c 8
3.b odd 2 1 inner 1368.2.e.c 8
4.b odd 2 1 5472.2.e.c 8
8.b even 2 1 5472.2.e.c 8
8.d odd 2 1 inner 1368.2.e.c 8
12.b even 2 1 5472.2.e.c 8
19.b odd 2 1 inner 1368.2.e.c 8
24.f even 2 1 inner 1368.2.e.c 8
24.h odd 2 1 5472.2.e.c 8
57.d even 2 1 inner 1368.2.e.c 8
76.d even 2 1 5472.2.e.c 8
152.b even 2 1 inner 1368.2.e.c 8
152.g odd 2 1 5472.2.e.c 8
228.b odd 2 1 5472.2.e.c 8
456.l odd 2 1 CM 1368.2.e.c 8
456.p even 2 1 5472.2.e.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1368.2.e.c 8 1.a even 1 1 trivial
1368.2.e.c 8 3.b odd 2 1 inner
1368.2.e.c 8 8.d odd 2 1 inner
1368.2.e.c 8 19.b odd 2 1 inner
1368.2.e.c 8 24.f even 2 1 inner
1368.2.e.c 8 57.d even 2 1 inner
1368.2.e.c 8 152.b even 2 1 inner
1368.2.e.c 8 456.l odd 2 1 CM
5472.2.e.c 8 4.b odd 2 1
5472.2.e.c 8 8.b even 2 1
5472.2.e.c 8 12.b even 2 1
5472.2.e.c 8 24.h odd 2 1
5472.2.e.c 8 76.d even 2 1
5472.2.e.c 8 152.g odd 2 1
5472.2.e.c 8 228.b odd 2 1
5472.2.e.c 8 456.p even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1368, [\chi])\):

\( T_{5}^{4} + 20T_{5}^{2} + 24 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} + 20 T^{2} + 24)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( (T^{4} - 52 T^{2} + 600)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( (T^{2} - 19)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} + 92 T^{2} + 216)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( (T^{4} - 124 T^{2} + 1944)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} - 148 T^{2} + 5400)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 152)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - 76)^{4} \) Copy content Toggle raw display
$47$ \( (T^{4} + 188 T^{2} + 6936)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( (T^{2} + 8)^{4} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( (T^{2} - 76)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} - 316 T^{2} + 23064)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( (T^{2} + 128)^{4} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less