L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (−0.5 − 0.866i)5-s − 0.999·6-s + (−0.5 + 0.866i)7-s + 0.999·8-s + (−0.499 + 0.866i)10-s + (0.499 + 0.866i)12-s + 0.999·14-s − 0.999·15-s + (−0.5 − 0.866i)16-s + 0.999·20-s + (0.499 + 0.866i)21-s + (0.5 + 0.866i)23-s + (0.499 − 0.866i)24-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (−0.5 − 0.866i)5-s − 0.999·6-s + (−0.5 + 0.866i)7-s + 0.999·8-s + (−0.499 + 0.866i)10-s + (0.499 + 0.866i)12-s + 0.999·14-s − 0.999·15-s + (−0.5 − 0.866i)16-s + 0.999·20-s + (0.499 + 0.866i)21-s + (0.5 + 0.866i)23-s + (0.499 − 0.866i)24-s + ⋯ |
Λ(s)=(=(140s/2ΓC(s)L(s)(−0.0633+0.997i)Λ(1−s)
Λ(s)=(=(140s/2ΓC(s)L(s)(−0.0633+0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
140
= 22⋅5⋅7
|
Sign: |
−0.0633+0.997i
|
Analytic conductor: |
0.0698691 |
Root analytic conductor: |
0.264327 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ140(39,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 140, ( :0), −0.0633+0.997i)
|
Particular Values
L(21) |
≈ |
0.5142261617 |
L(21) |
≈ |
0.5142261617 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 5 | 1+(0.5+0.866i)T |
| 7 | 1+(0.5−0.866i)T |
good | 3 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1−T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 29 | 1+T+T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1+(0.5−0.866i)T2 |
| 41 | 1+T+T2 |
| 43 | 1+T+T2 |
| 47 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 53 | 1+(0.5+0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 67 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(0.5+0.866i)T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1+T+T2 |
| 89 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.02974905280989370564192259687, −12.17860024544497028843624594850, −11.42040436361054528192267196081, −9.877769206049269076046763875976, −8.868601555853835613352467318640, −8.180747780401275503283824113235, −7.10387591591902298203109404153, −5.13376199973804018896584366820, −3.41763793665203501307430262132, −1.84798733176887999444039248112,
3.43782950479146480647989201129, 4.57530209214505313204504732398, 6.41661967871024913557960236053, 7.26104126294525014046992686963, 8.416143973274795439126093561837, 9.614591293890291152644650722770, 10.27748392754102519390547451999, 11.16716525752643526132281201912, 12.96999685799762280518674606496, 14.17587321847294524728955915446