Properties

Label 2-156-13.10-c1-0-0
Degree 22
Conductor 156156
Sign 0.8220.569i0.822 - 0.569i
Analytic cond. 1.245661.24566
Root an. cond. 1.116091.11609
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)3-s + 4.14i·5-s + (2.08 + 1.20i)7-s + (−0.499 + 0.866i)9-s + (3 − 1.73i)11-s + (1.5 − 3.27i)13-s + (3.58 − 2.07i)15-s + (−2.58 + 4.48i)17-s + (−3 − 1.73i)19-s − 2.41i·21-s + (1 + 1.73i)23-s − 12.1·25-s + 0.999·27-s + (−1.58 − 2.75i)29-s + 1.05i·31-s + ⋯
L(s)  = 1  + (−0.288 − 0.499i)3-s + 1.85i·5-s + (0.789 + 0.455i)7-s + (−0.166 + 0.288i)9-s + (0.904 − 0.522i)11-s + (0.416 − 0.909i)13-s + (0.926 − 0.535i)15-s + (−0.628 + 1.08i)17-s + (−0.688 − 0.397i)19-s − 0.526i·21-s + (0.208 + 0.361i)23-s − 2.43·25-s + 0.192·27-s + (−0.295 − 0.511i)29-s + 0.188i·31-s + ⋯

Functional equation

Λ(s)=(156s/2ΓC(s)L(s)=((0.8220.569i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.822 - 0.569i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(156s/2ΓC(s+1/2)L(s)=((0.8220.569i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.822 - 0.569i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 156156    =    223132^{2} \cdot 3 \cdot 13
Sign: 0.8220.569i0.822 - 0.569i
Analytic conductor: 1.245661.24566
Root analytic conductor: 1.116091.11609
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ156(49,)\chi_{156} (49, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 156, ( :1/2), 0.8220.569i)(2,\ 156,\ (\ :1/2),\ 0.822 - 0.569i)

Particular Values

L(1)L(1) \approx 1.05690+0.330012i1.05690 + 0.330012i
L(12)L(\frac12) \approx 1.05690+0.330012i1.05690 + 0.330012i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
13 1+(1.5+3.27i)T 1 + (-1.5 + 3.27i)T
good5 14.14iT5T2 1 - 4.14iT - 5T^{2}
7 1+(2.081.20i)T+(3.5+6.06i)T2 1 + (-2.08 - 1.20i)T + (3.5 + 6.06i)T^{2}
11 1+(3+1.73i)T+(5.59.52i)T2 1 + (-3 + 1.73i)T + (5.5 - 9.52i)T^{2}
17 1+(2.584.48i)T+(8.514.7i)T2 1 + (2.58 - 4.48i)T + (-8.5 - 14.7i)T^{2}
19 1+(3+1.73i)T+(9.5+16.4i)T2 1 + (3 + 1.73i)T + (9.5 + 16.4i)T^{2}
23 1+(11.73i)T+(11.5+19.9i)T2 1 + (-1 - 1.73i)T + (-11.5 + 19.9i)T^{2}
29 1+(1.58+2.75i)T+(14.5+25.1i)T2 1 + (1.58 + 2.75i)T + (-14.5 + 25.1i)T^{2}
31 11.05iT31T2 1 - 1.05iT - 31T^{2}
37 1+(6.58+3.80i)T+(18.532.0i)T2 1 + (-6.58 + 3.80i)T + (18.5 - 32.0i)T^{2}
41 1+(0.5890.340i)T+(20.535.5i)T2 1 + (0.589 - 0.340i)T + (20.5 - 35.5i)T^{2}
43 1+(6.08+10.5i)T+(21.537.2i)T2 1 + (-6.08 + 10.5i)T + (-21.5 - 37.2i)T^{2}
47 1+10.3iT47T2 1 + 10.3iT - 47T^{2}
53 11.17T+53T2 1 - 1.17T + 53T^{2}
59 1+(10.1+5.87i)T+(29.5+51.0i)T2 1 + (10.1 + 5.87i)T + (29.5 + 51.0i)T^{2}
61 1+(2.54.33i)T+(30.552.8i)T2 1 + (2.5 - 4.33i)T + (-30.5 - 52.8i)T^{2}
67 1+(2.081.20i)T+(33.558.0i)T2 1 + (2.08 - 1.20i)T + (33.5 - 58.0i)T^{2}
71 1+(3+1.73i)T+(35.5+61.4i)T2 1 + (3 + 1.73i)T + (35.5 + 61.4i)T^{2}
73 114.8iT73T2 1 - 14.8iT - 73T^{2}
79 11.82T+79T2 1 - 1.82T + 79T^{2}
83 1+1.36iT83T2 1 + 1.36iT - 83T^{2}
89 1+(6+3.46i)T+(44.577.0i)T2 1 + (-6 + 3.46i)T + (44.5 - 77.0i)T^{2}
97 1+(15.28.81i)T+(48.5+84.0i)T2 1 + (-15.2 - 8.81i)T + (48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.11306510884583046859183370332, −11.75164542981706926327522416233, −11.05940989265694986908398089580, −10.43548644321582412687364247619, −8.756441277280242303651446807199, −7.66014644328454915840600066703, −6.56059910586342399099871911475, −5.80147878610528880964109295369, −3.73982971399052110874871265241, −2.23080141833620993159800757180, 1.38926026282112266105857102187, 4.47374449864779133404461512491, 4.56106484069067626908446634377, 6.21014048053753204435227001131, 7.80214958935753081860106907376, 9.013706066831028281843662931595, 9.432009154217241701066443891018, 11.03862328200314933896035232560, 11.83246236524359221173862133024, 12.72404937857673455885675239814

Graph of the ZZ-function along the critical line