L(s) = 1 | + (−0.5 + 0.866i)3-s − 4.14i·5-s + (2.08 − 1.20i)7-s + (−0.499 − 0.866i)9-s + (3 + 1.73i)11-s + (1.5 + 3.27i)13-s + (3.58 + 2.07i)15-s + (−2.58 − 4.48i)17-s + (−3 + 1.73i)19-s + 2.41i·21-s + (1 − 1.73i)23-s − 12.1·25-s + 0.999·27-s + (−1.58 + 2.75i)29-s − 1.05i·31-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s − 1.85i·5-s + (0.789 − 0.455i)7-s + (−0.166 − 0.288i)9-s + (0.904 + 0.522i)11-s + (0.416 + 0.909i)13-s + (0.926 + 0.535i)15-s + (−0.628 − 1.08i)17-s + (−0.688 + 0.397i)19-s + 0.526i·21-s + (0.208 − 0.361i)23-s − 2.43·25-s + 0.192·27-s + (−0.295 + 0.511i)29-s − 0.188i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.822 + 0.569i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.822 + 0.569i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.05690 - 0.330012i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.05690 - 0.330012i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (-1.5 - 3.27i)T \) |
good | 5 | \( 1 + 4.14iT - 5T^{2} \) |
| 7 | \( 1 + (-2.08 + 1.20i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-3 - 1.73i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (2.58 + 4.48i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3 - 1.73i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1 + 1.73i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.58 - 2.75i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 1.05iT - 31T^{2} \) |
| 37 | \( 1 + (-6.58 - 3.80i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.589 + 0.340i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.08 - 10.5i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 10.3iT - 47T^{2} \) |
| 53 | \( 1 - 1.17T + 53T^{2} \) |
| 59 | \( 1 + (10.1 - 5.87i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.5 + 4.33i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.08 + 1.20i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (3 - 1.73i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 14.8iT - 73T^{2} \) |
| 79 | \( 1 - 1.82T + 79T^{2} \) |
| 83 | \( 1 - 1.36iT - 83T^{2} \) |
| 89 | \( 1 + (-6 - 3.46i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-15.2 + 8.81i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.72404937857673455885675239814, −11.83246236524359221173862133024, −11.03862328200314933896035232560, −9.432009154217241701066443891018, −9.013706066831028281843662931595, −7.80214958935753081860106907376, −6.21014048053753204435227001131, −4.56106484069067626908446634377, −4.47374449864779133404461512491, −1.38926026282112266105857102187,
2.23080141833620993159800757180, 3.73982971399052110874871265241, 5.80147878610528880964109295369, 6.56059910586342399099871911475, 7.66014644328454915840600066703, 8.756441277280242303651446807199, 10.43548644321582412687364247619, 11.05940989265694986908398089580, 11.75164542981706926327522416233, 13.11306510884583046859183370332