L(s) = 1 | + (−0.5 + 0.866i)3-s − 4.14i·5-s + (2.08 − 1.20i)7-s + (−0.499 − 0.866i)9-s + (3 + 1.73i)11-s + (1.5 + 3.27i)13-s + (3.58 + 2.07i)15-s + (−2.58 − 4.48i)17-s + (−3 + 1.73i)19-s + 2.41i·21-s + (1 − 1.73i)23-s − 12.1·25-s + 0.999·27-s + (−1.58 + 2.75i)29-s − 1.05i·31-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s − 1.85i·5-s + (0.789 − 0.455i)7-s + (−0.166 − 0.288i)9-s + (0.904 + 0.522i)11-s + (0.416 + 0.909i)13-s + (0.926 + 0.535i)15-s + (−0.628 − 1.08i)17-s + (−0.688 + 0.397i)19-s + 0.526i·21-s + (0.208 − 0.361i)23-s − 2.43·25-s + 0.192·27-s + (−0.295 + 0.511i)29-s − 0.188i·31-s + ⋯ |
Λ(s)=(=(156s/2ΓC(s)L(s)(0.822+0.569i)Λ(2−s)
Λ(s)=(=(156s/2ΓC(s+1/2)L(s)(0.822+0.569i)Λ(1−s)
Degree: |
2 |
Conductor: |
156
= 22⋅3⋅13
|
Sign: |
0.822+0.569i
|
Analytic conductor: |
1.24566 |
Root analytic conductor: |
1.11609 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ156(121,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 156, ( :1/2), 0.822+0.569i)
|
Particular Values
L(1) |
≈ |
1.05690−0.330012i |
L(21) |
≈ |
1.05690−0.330012i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.5−0.866i)T |
| 13 | 1+(−1.5−3.27i)T |
good | 5 | 1+4.14iT−5T2 |
| 7 | 1+(−2.08+1.20i)T+(3.5−6.06i)T2 |
| 11 | 1+(−3−1.73i)T+(5.5+9.52i)T2 |
| 17 | 1+(2.58+4.48i)T+(−8.5+14.7i)T2 |
| 19 | 1+(3−1.73i)T+(9.5−16.4i)T2 |
| 23 | 1+(−1+1.73i)T+(−11.5−19.9i)T2 |
| 29 | 1+(1.58−2.75i)T+(−14.5−25.1i)T2 |
| 31 | 1+1.05iT−31T2 |
| 37 | 1+(−6.58−3.80i)T+(18.5+32.0i)T2 |
| 41 | 1+(0.589+0.340i)T+(20.5+35.5i)T2 |
| 43 | 1+(−6.08−10.5i)T+(−21.5+37.2i)T2 |
| 47 | 1−10.3iT−47T2 |
| 53 | 1−1.17T+53T2 |
| 59 | 1+(10.1−5.87i)T+(29.5−51.0i)T2 |
| 61 | 1+(2.5+4.33i)T+(−30.5+52.8i)T2 |
| 67 | 1+(2.08+1.20i)T+(33.5+58.0i)T2 |
| 71 | 1+(3−1.73i)T+(35.5−61.4i)T2 |
| 73 | 1+14.8iT−73T2 |
| 79 | 1−1.82T+79T2 |
| 83 | 1−1.36iT−83T2 |
| 89 | 1+(−6−3.46i)T+(44.5+77.0i)T2 |
| 97 | 1+(−15.2+8.81i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.72404937857673455885675239814, −11.83246236524359221173862133024, −11.03862328200314933896035232560, −9.432009154217241701066443891018, −9.013706066831028281843662931595, −7.80214958935753081860106907376, −6.21014048053753204435227001131, −4.56106484069067626908446634377, −4.47374449864779133404461512491, −1.38926026282112266105857102187,
2.23080141833620993159800757180, 3.73982971399052110874871265241, 5.80147878610528880964109295369, 6.56059910586342399099871911475, 7.66014644328454915840600066703, 8.756441277280242303651446807199, 10.43548644321582412687364247619, 11.05940989265694986908398089580, 11.75164542981706926327522416233, 13.11306510884583046859183370332