Properties

Label 156.2.q.b
Level 156156
Weight 22
Character orbit 156.q
Analytic conductor 1.2461.246
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [156,2,Mod(49,156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(156, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("156.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 156=22313 156 = 2^{2} \cdot 3 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 156.q (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.245666271531.24566627153
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(3,43)\Q(\sqrt{-3}, \sqrt{-43})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x310x211x+121 x^{4} - x^{3} - 10x^{2} - 11x + 121 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β21)q3+(β3β2+β1)q5+(β31)q7β2q9+(2β2+2)q11+(β3β1+2)q13+(β1+1)q15++(4β2+2)q99+O(q100) q + (\beta_{2} - 1) q^{3} + ( - \beta_{3} - \beta_{2} + \beta_1) q^{5} + ( - \beta_{3} - 1) q^{7} - \beta_{2} q^{9} + (2 \beta_{2} + 2) q^{11} + (\beta_{3} - \beta_1 + 2) q^{13} + ( - \beta_1 + 1) q^{15}+ \cdots + ( - 4 \beta_{2} + 2) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q33q72q9+12q11+6q13+3q15+q1712q19+4q2326q25+4q27+5q2912q3320q35+15q373q39+9q41+13q43++27q97+O(q100) 4 q - 2 q^{3} - 3 q^{7} - 2 q^{9} + 12 q^{11} + 6 q^{13} + 3 q^{15} + q^{17} - 12 q^{19} + 4 q^{23} - 26 q^{25} + 4 q^{27} + 5 q^{29} - 12 q^{33} - 20 q^{35} + 15 q^{37} - 3 q^{39} + 9 q^{41} + 13 q^{43}+ \cdots + 27 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x310x211x+121 x^{4} - x^{3} - 10x^{2} - 11x + 121 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+10ν210ν11)/110 ( \nu^{3} + 10\nu^{2} - 10\nu - 11 ) / 110 Copy content Toggle raw display
β3\beta_{3}== (ν3+10ν+11)/10 ( -\nu^{3} + 10\nu + 11 ) / 10 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+11β2 \beta_{3} + 11\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 10β3+10β1+11 -10\beta_{3} + 10\beta _1 + 11 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/156Z)×\left(\mathbb{Z}/156\mathbb{Z}\right)^\times.

nn 5353 7979 145145
χ(n)\chi(n) 11 11 β2\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
3.08945 1.20635i
−2.58945 + 2.07237i
−2.58945 2.07237i
3.08945 + 1.20635i
0 −0.500000 0.866025i 0 2.41269i 0 −3.58945 2.07237i 0 −0.500000 + 0.866025i 0
49.2 0 −0.500000 0.866025i 0 4.14474i 0 2.08945 + 1.20635i 0 −0.500000 + 0.866025i 0
121.1 0 −0.500000 + 0.866025i 0 4.14474i 0 2.08945 1.20635i 0 −0.500000 0.866025i 0
121.2 0 −0.500000 + 0.866025i 0 2.41269i 0 −3.58945 + 2.07237i 0 −0.500000 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 156.2.q.b 4
3.b odd 2 1 468.2.t.d 4
4.b odd 2 1 624.2.bv.f 4
5.b even 2 1 3900.2.cd.i 4
5.c odd 4 2 3900.2.bw.j 8
12.b even 2 1 1872.2.by.j 4
13.b even 2 1 2028.2.q.f 4
13.c even 3 1 2028.2.b.e 4
13.c even 3 1 2028.2.q.f 4
13.d odd 4 2 2028.2.i.n 8
13.e even 6 1 inner 156.2.q.b 4
13.e even 6 1 2028.2.b.e 4
13.f odd 12 2 2028.2.a.m 4
13.f odd 12 2 2028.2.i.n 8
39.h odd 6 1 468.2.t.d 4
39.h odd 6 1 6084.2.b.o 4
39.i odd 6 1 6084.2.b.o 4
39.k even 12 2 6084.2.a.bd 4
52.i odd 6 1 624.2.bv.f 4
52.l even 12 2 8112.2.a.cr 4
65.l even 6 1 3900.2.cd.i 4
65.r odd 12 2 3900.2.bw.j 8
156.r even 6 1 1872.2.by.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.2.q.b 4 1.a even 1 1 trivial
156.2.q.b 4 13.e even 6 1 inner
468.2.t.d 4 3.b odd 2 1
468.2.t.d 4 39.h odd 6 1
624.2.bv.f 4 4.b odd 2 1
624.2.bv.f 4 52.i odd 6 1
1872.2.by.j 4 12.b even 2 1
1872.2.by.j 4 156.r even 6 1
2028.2.a.m 4 13.f odd 12 2
2028.2.b.e 4 13.c even 3 1
2028.2.b.e 4 13.e even 6 1
2028.2.i.n 8 13.d odd 4 2
2028.2.i.n 8 13.f odd 12 2
2028.2.q.f 4 13.b even 2 1
2028.2.q.f 4 13.c even 3 1
3900.2.bw.j 8 5.c odd 4 2
3900.2.bw.j 8 65.r odd 12 2
3900.2.cd.i 4 5.b even 2 1
3900.2.cd.i 4 65.l even 6 1
6084.2.a.bd 4 39.k even 12 2
6084.2.b.o 4 39.h odd 6 1
6084.2.b.o 4 39.i odd 6 1
8112.2.a.cr 4 52.l even 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T54+23T52+100 T_{5}^{4} + 23T_{5}^{2} + 100 acting on S2new(156,[χ])S_{2}^{\mathrm{new}}(156, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
55 T4+23T2+100 T^{4} + 23T^{2} + 100 Copy content Toggle raw display
77 T4+3T3++100 T^{4} + 3 T^{3} + \cdots + 100 Copy content Toggle raw display
1111 (T26T+12)2 (T^{2} - 6 T + 12)^{2} Copy content Toggle raw display
1313 (T23T+13)2 (T^{2} - 3 T + 13)^{2} Copy content Toggle raw display
1717 T4T3++1024 T^{4} - T^{3} + \cdots + 1024 Copy content Toggle raw display
1919 (T2+6T+12)2 (T^{2} + 6 T + 12)^{2} Copy content Toggle raw display
2323 (T22T+4)2 (T^{2} - 2 T + 4)^{2} Copy content Toggle raw display
2929 T45T3++676 T^{4} - 5 T^{3} + \cdots + 676 Copy content Toggle raw display
3131 T4+59T2+64 T^{4} + 59T^{2} + 64 Copy content Toggle raw display
3737 T415T3++64 T^{4} - 15 T^{3} + \cdots + 64 Copy content Toggle raw display
4141 T49T3++16 T^{4} - 9 T^{3} + \cdots + 16 Copy content Toggle raw display
4343 T413T3++100 T^{4} - 13 T^{3} + \cdots + 100 Copy content Toggle raw display
4747 (T2+108)2 (T^{2} + 108)^{2} Copy content Toggle raw display
5353 (T2+9T12)2 (T^{2} + 9 T - 12)^{2} Copy content Toggle raw display
5959 T4+18T3++256 T^{4} + 18 T^{3} + \cdots + 256 Copy content Toggle raw display
6161 (T2+5T+25)2 (T^{2} + 5 T + 25)^{2} Copy content Toggle raw display
6767 T43T3++100 T^{4} - 3 T^{3} + \cdots + 100 Copy content Toggle raw display
7171 (T2+6T+12)2 (T^{2} + 6 T + 12)^{2} Copy content Toggle raw display
7373 T4+350T2+28561 T^{4} + 350 T^{2} + 28561 Copy content Toggle raw display
7979 (T215T+24)2 (T^{2} - 15 T + 24)^{2} Copy content Toggle raw display
8383 T4+140T2+256 T^{4} + 140T^{2} + 256 Copy content Toggle raw display
8989 (T212T+48)2 (T^{2} - 12 T + 48)^{2} Copy content Toggle raw display
9797 T427T3++1296 T^{4} - 27 T^{3} + \cdots + 1296 Copy content Toggle raw display
show more
show less