Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [156,2,Mod(49,156)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(156, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("156.49");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 156.q (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 |
|
0 | −0.500000 | − | 0.866025i | 0 | − | 2.41269i | 0 | −3.58945 | − | 2.07237i | 0 | −0.500000 | + | 0.866025i | 0 | |||||||||||||||||||||||
49.2 | 0 | −0.500000 | − | 0.866025i | 0 | 4.14474i | 0 | 2.08945 | + | 1.20635i | 0 | −0.500000 | + | 0.866025i | 0 | |||||||||||||||||||||||||
121.1 | 0 | −0.500000 | + | 0.866025i | 0 | − | 4.14474i | 0 | 2.08945 | − | 1.20635i | 0 | −0.500000 | − | 0.866025i | 0 | ||||||||||||||||||||||||
121.2 | 0 | −0.500000 | + | 0.866025i | 0 | 2.41269i | 0 | −3.58945 | + | 2.07237i | 0 | −0.500000 | − | 0.866025i | 0 | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.e | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 156.2.q.b | ✓ | 4 |
3.b | odd | 2 | 1 | 468.2.t.d | 4 | ||
4.b | odd | 2 | 1 | 624.2.bv.f | 4 | ||
5.b | even | 2 | 1 | 3900.2.cd.i | 4 | ||
5.c | odd | 4 | 2 | 3900.2.bw.j | 8 | ||
12.b | even | 2 | 1 | 1872.2.by.j | 4 | ||
13.b | even | 2 | 1 | 2028.2.q.f | 4 | ||
13.c | even | 3 | 1 | 2028.2.b.e | 4 | ||
13.c | even | 3 | 1 | 2028.2.q.f | 4 | ||
13.d | odd | 4 | 2 | 2028.2.i.n | 8 | ||
13.e | even | 6 | 1 | inner | 156.2.q.b | ✓ | 4 |
13.e | even | 6 | 1 | 2028.2.b.e | 4 | ||
13.f | odd | 12 | 2 | 2028.2.a.m | 4 | ||
13.f | odd | 12 | 2 | 2028.2.i.n | 8 | ||
39.h | odd | 6 | 1 | 468.2.t.d | 4 | ||
39.h | odd | 6 | 1 | 6084.2.b.o | 4 | ||
39.i | odd | 6 | 1 | 6084.2.b.o | 4 | ||
39.k | even | 12 | 2 | 6084.2.a.bd | 4 | ||
52.i | odd | 6 | 1 | 624.2.bv.f | 4 | ||
52.l | even | 12 | 2 | 8112.2.a.cr | 4 | ||
65.l | even | 6 | 1 | 3900.2.cd.i | 4 | ||
65.r | odd | 12 | 2 | 3900.2.bw.j | 8 | ||
156.r | even | 6 | 1 | 1872.2.by.j | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
156.2.q.b | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
156.2.q.b | ✓ | 4 | 13.e | even | 6 | 1 | inner |
468.2.t.d | 4 | 3.b | odd | 2 | 1 | ||
468.2.t.d | 4 | 39.h | odd | 6 | 1 | ||
624.2.bv.f | 4 | 4.b | odd | 2 | 1 | ||
624.2.bv.f | 4 | 52.i | odd | 6 | 1 | ||
1872.2.by.j | 4 | 12.b | even | 2 | 1 | ||
1872.2.by.j | 4 | 156.r | even | 6 | 1 | ||
2028.2.a.m | 4 | 13.f | odd | 12 | 2 | ||
2028.2.b.e | 4 | 13.c | even | 3 | 1 | ||
2028.2.b.e | 4 | 13.e | even | 6 | 1 | ||
2028.2.i.n | 8 | 13.d | odd | 4 | 2 | ||
2028.2.i.n | 8 | 13.f | odd | 12 | 2 | ||
2028.2.q.f | 4 | 13.b | even | 2 | 1 | ||
2028.2.q.f | 4 | 13.c | even | 3 | 1 | ||
3900.2.bw.j | 8 | 5.c | odd | 4 | 2 | ||
3900.2.bw.j | 8 | 65.r | odd | 12 | 2 | ||
3900.2.cd.i | 4 | 5.b | even | 2 | 1 | ||
3900.2.cd.i | 4 | 65.l | even | 6 | 1 | ||
6084.2.a.bd | 4 | 39.k | even | 12 | 2 | ||
6084.2.b.o | 4 | 39.h | odd | 6 | 1 | ||
6084.2.b.o | 4 | 39.i | odd | 6 | 1 | ||
8112.2.a.cr | 4 | 52.l | even | 12 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .