L(s) = 1 | + 16.4i·3-s + (15.0 − 19.9i)5-s + 3.44·7-s − 188.·9-s − 123.·11-s − 198.·13-s + (327. + 247. i)15-s + 203. i·17-s − 78.3·19-s + 56.5i·21-s − 644.·23-s + (−171. − 600. i)25-s − 1.76e3i·27-s − 855. i·29-s + 1.08e3i·31-s + ⋯ |
L(s) = 1 | + 1.82i·3-s + (0.602 − 0.798i)5-s + 0.0702·7-s − 2.32·9-s − 1.01·11-s − 1.17·13-s + (1.45 + 1.09i)15-s + 0.705i·17-s − 0.217·19-s + 0.128i·21-s − 1.21·23-s + (−0.274 − 0.961i)25-s − 2.41i·27-s − 1.01i·29-s + 1.12i·31-s + ⋯ |
Λ(s)=(=(160s/2ΓC(s)L(s)(−0.748+0.663i)Λ(5−s)
Λ(s)=(=(160s/2ΓC(s+2)L(s)(−0.748+0.663i)Λ(1−s)
Degree: |
2 |
Conductor: |
160
= 25⋅5
|
Sign: |
−0.748+0.663i
|
Analytic conductor: |
16.5391 |
Root analytic conductor: |
4.06684 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ160(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 160, ( :2), −0.748+0.663i)
|
Particular Values
L(25) |
≈ |
0.148677−0.391965i |
L(21) |
≈ |
0.148677−0.391965i |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−15.0+19.9i)T |
good | 3 | 1−16.4iT−81T2 |
| 7 | 1−3.44T+2.40e3T2 |
| 11 | 1+123.T+1.46e4T2 |
| 13 | 1+198.T+2.85e4T2 |
| 17 | 1−203.iT−8.35e4T2 |
| 19 | 1+78.3T+1.30e5T2 |
| 23 | 1+644.T+2.79e5T2 |
| 29 | 1+855.iT−7.07e5T2 |
| 31 | 1−1.08e3iT−9.23e5T2 |
| 37 | 1−546.T+1.87e6T2 |
| 41 | 1−370.T+2.82e6T2 |
| 43 | 1−257.iT−3.41e6T2 |
| 47 | 1−315.T+4.87e6T2 |
| 53 | 1−4.12e3T+7.89e6T2 |
| 59 | 1+3.03e3T+1.21e7T2 |
| 61 | 1−3.00e3iT−1.38e7T2 |
| 67 | 1−4.35e3iT−2.01e7T2 |
| 71 | 1−3.88e3iT−2.54e7T2 |
| 73 | 1−4.30e3iT−2.83e7T2 |
| 79 | 1+6.52e3iT−3.89e7T2 |
| 83 | 1−411.iT−4.74e7T2 |
| 89 | 1−614.T+6.27e7T2 |
| 97 | 1+4.93e3iT−8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.77743843834288966534233917442, −11.67113040327511098016453200237, −10.28950465310804489923534893468, −10.04777277771136865430818065485, −8.966694539855044294064815184774, −8.022897410286907104661336472989, −5.87607624046087597255191834779, −5.02253552502989627856005056679, −4.15121881477229878810457124849, −2.50773734548581531544003419413,
0.14444346072548475134536317362, 1.99028566044398440420984409903, 2.78266435617565561116103369539, 5.35392964742517081196894666425, 6.39913215667656453673100817289, 7.35021502031350879691035009751, 7.978987457947813769420734765657, 9.529244877032039480595744720339, 10.74597032803858248226389925142, 11.82338512389172643872186797222