Properties

Label 160.5.e.c
Level $160$
Weight $5$
Character orbit 160.e
Analytic conductor $16.539$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,5,Mod(79,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.79");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 160.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.5391940934\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 10 x^{18} - 20 x^{16} + 2640 x^{14} + 22400 x^{12} - 652288 x^{10} + 5734400 x^{8} + \cdots + 1099511627776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{70}\cdot 5^{5} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{3} + \beta_{2} q^{5} - \beta_{8} q^{7} + ( - \beta_1 - 33) q^{9} + (\beta_{3} + 8) q^{11} + ( - \beta_{16} - \beta_{8} + \beta_{2}) q^{13} + ( - \beta_{11} - \beta_{9} - \beta_{6}) q^{15}+ \cdots + (\beta_{7} - 10 \beta_{5} + \cdots + 3168) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 652 q^{9} + 168 q^{11} - 728 q^{19} - 1420 q^{25} - 4440 q^{35} - 4728 q^{41} + 540 q^{49} - 4352 q^{51} - 8280 q^{59} + 9480 q^{65} + 16000 q^{75} - 10956 q^{81} + 22248 q^{89} + 39760 q^{91} + 62504 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} + 10 x^{18} - 20 x^{16} + 2640 x^{14} + 22400 x^{12} - 652288 x^{10} + 5734400 x^{8} + \cdots + 1099511627776 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 1017 \nu^{18} - 36986 \nu^{16} - 456716 \nu^{14} - 2402512 \nu^{12} + \cdots - 43121471651840 ) / 3060164198400 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 513 \nu^{19} + 4288 \nu^{18} - 15882 \nu^{17} + 45952 \nu^{16} + 566292 \nu^{15} + \cdots + 905241667043328 ) / 97925254348800 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 3453 \nu^{18} - 2274 \nu^{16} + 457156 \nu^{14} + 7409392 \nu^{12} + \cdots - 100437810216960 ) / 3060164198400 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 1863 \nu^{19} - 12474 \nu^{17} + 307060 \nu^{15} + 3181104 \nu^{13} + \cdots + 101928163868672 \nu ) / 97925254348800 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 1077 \nu^{18} + 22466 \nu^{16} - 212804 \nu^{14} + 1624272 \nu^{12} + 82138240 \nu^{10} + \cdots + 15418932592640 ) / 765041049600 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 1387 \nu^{19} - 4288 \nu^{18} - 15918 \nu^{17} - 45952 \nu^{16} + 1801308 \nu^{15} + \cdots - 905241667043328 ) / 48962627174400 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 24 \nu^{18} - 203 \nu^{16} + 1042 \nu^{14} + 148124 \nu^{12} - 587120 \nu^{10} + \cdots + 1344526090240 ) / 9563013120 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 4579 \nu^{19} - 195234 \nu^{17} + 1282884 \nu^{15} + 21725936 \nu^{13} + \cdots + 511375986130944 \nu ) / 97925254348800 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 7657 \nu^{19} + 17152 \nu^{18} - 99942 \nu^{17} + 183808 \nu^{16} - 2114868 \nu^{15} + \cdots + 36\!\cdots\!12 ) / 97925254348800 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 171 \nu^{19} + 230336 \nu^{18} - 5294 \nu^{17} + 2294144 \nu^{16} + \cdots + 77\!\cdots\!16 ) / 32641751449600 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 5225 \nu^{19} - 87728 \nu^{18} - 60390 \nu^{17} + 496928 \nu^{16} - 2172980 \nu^{15} + \cdots - 55\!\cdots\!88 ) / 48962627174400 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 1045 \nu^{19} - 1872 \nu^{18} - 12078 \nu^{17} - 149792 \nu^{16} - 434596 \nu^{15} + \cdots + 20\!\cdots\!60 ) / 9792525434880 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 10963 \nu^{19} + 4448 \nu^{18} + 104898 \nu^{17} + 6775232 \nu^{16} + \cdots + 14\!\cdots\!68 ) / 97925254348800 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 22439 \nu^{19} - 4288 \nu^{18} - 193914 \nu^{17} - 45952 \nu^{16} - 10390796 \nu^{15} + \cdots - 905241667043328 ) / 97925254348800 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 24235 \nu^{19} - 53952 \nu^{18} + 673070 \nu^{17} + 2477184 \nu^{16} + \cdots - 58\!\cdots\!40 ) / 97925254348800 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 10317 \nu^{19} + 1072 \nu^{18} + 107298 \nu^{17} + 11488 \nu^{16} + 754492 \nu^{15} + \cdots + 226310416760832 ) / 24481313587200 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( 15027 \nu^{19} - 108546 \nu^{17} - 1086460 \nu^{15} + 1004016 \nu^{13} + \cdots + 9783935500288 \nu ) / 24481313587200 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 77731 \nu^{19} + 53952 \nu^{18} - 1461538 \nu^{17} - 2477184 \nu^{16} + \cdots + 58\!\cdots\!40 ) / 97925254348800 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( 89337 \nu^{19} + 924474 \nu^{17} - 2131060 \nu^{15} + 237586896 \nu^{13} + \cdots + 10\!\cdots\!28 \nu ) / 97925254348800 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{19} - 2\beta_{16} - \beta_{14} + \beta_{9} + \beta_{8} + \beta_{4} - 3\beta_{2} ) / 128 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{10} + \beta_{9} - \beta_{8} - \beta_{7} - 2\beta_{5} + \beta_{3} + 5\beta_{2} + 3\beta _1 - 64 ) / 64 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - \beta_{19} - 2 \beta_{18} + 2 \beta_{15} + 6 \beta_{14} + 6 \beta_{9} + 10 \beta_{8} + \cdots - 14 \beta_{2} ) / 32 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - 12 \beta_{14} + 2 \beta_{13} - 2 \beta_{12} + 28 \beta_{11} + \beta_{10} + 15 \beta_{9} - 15 \beta_{8} + \cdots + 476 ) / 32 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 7 \beta_{19} + 36 \beta_{18} - 16 \beta_{17} - 50 \beta_{16} + 12 \beta_{15} + 59 \beta_{14} + \cdots + 273 \beta_{2} ) / 32 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 10 \beta_{14} - 11 \beta_{13} + 19 \beta_{12} - 50 \beta_{11} - 2 \beta_{10} + 89 \beta_{9} + \cdots - 7554 ) / 8 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 163 \beta_{19} + 168 \beta_{18} - 240 \beta_{17} + 870 \beta_{16} - 24 \beta_{15} + \cdots - 1519 \beta_{2} ) / 16 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 928 \beta_{14} - 136 \beta_{13} + 248 \beta_{12} + 1472 \beta_{11} - 137 \beta_{10} - 81 \beta_{9} + \cdots + 27488 ) / 8 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 177 \beta_{19} + 458 \beta_{18} + 2480 \beta_{17} - 1044 \beta_{16} + 70 \beta_{15} + \cdots - 4696 \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 4356 \beta_{14} - 7002 \beta_{13} + 1146 \beta_{12} + 564 \beta_{11} + 3287 \beta_{10} + \cdots + 1024116 ) / 4 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 18117 \beta_{19} - 7972 \beta_{18} + 10000 \beta_{17} - 7174 \beta_{16} - 140 \beta_{15} + \cdots + 181659 \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 10906 \beta_{14} + 11203 \beta_{13} + 7221 \beta_{12} + 25794 \beta_{11} + 6968 \beta_{10} + \cdots - 4428974 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 70189 \beta_{19} + 45480 \beta_{18} - 87440 \beta_{17} + 8010 \beta_{16} + 82248 \beta_{15} + \cdots - 624089 \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 42928 \beta_{14} - 79744 \beta_{13} - 127600 \beta_{12} + 133712 \beta_{11} - 88035 \beta_{10} + \cdots - 45264208 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 505386 \beta_{19} + 811772 \beta_{18} - 1664032 \beta_{17} + 2390000 \beta_{16} + \cdots + 16533708 \beta_{2} \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( 2358824 \beta_{14} + 5816900 \beta_{13} + 828668 \beta_{12} + 270584 \beta_{11} - 666014 \beta_{10} + \cdots - 663272072 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 6097438 \beta_{19} - 10532152 \beta_{18} - 11639200 \beta_{17} + 67889660 \beta_{16} + \cdots - 127838670 \beta_{2} \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( 10785872 \beta_{14} - 64146136 \beta_{13} - 18904552 \beta_{12} - 66813328 \beta_{11} + \cdots - 22223001616 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( 102661428 \beta_{19} - 94971104 \beta_{18} + 719474240 \beta_{17} + 931615896 \beta_{16} + \cdots + 2188601924 \beta_{2} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
79.1
3.92076 0.792224i
−3.92076 0.792224i
−1.28868 3.78673i
1.28868 3.78673i
0.495691 + 3.96917i
−0.495691 + 3.96917i
−3.42328 + 2.06909i
3.42328 + 2.06909i
2.91588 2.73819i
−2.91588 2.73819i
2.91588 + 2.73819i
−2.91588 + 2.73819i
−3.42328 2.06909i
3.42328 2.06909i
0.495691 3.96917i
−0.495691 3.96917i
−1.28868 + 3.78673i
1.28868 + 3.78673i
3.92076 + 0.792224i
−3.92076 + 0.792224i
0 16.4147i 0 −15.0565 19.9575i 0 −3.44277 0 −188.441 0
79.2 0 16.4147i 0 15.0565 + 19.9575i 0 3.44277 0 −188.441 0
79.3 0 10.5360i 0 −24.9415 + 1.70938i 0 −26.0178 0 −30.0072 0
79.4 0 10.5360i 0 24.9415 1.70938i 0 26.0178 0 −30.0072 0
79.5 0 10.2033i 0 −17.9141 + 17.4381i 0 84.8600 0 −23.1073 0
79.6 0 10.2033i 0 17.9141 17.4381i 0 −84.8600 0 −23.1073 0
79.7 0 9.05347i 0 −4.74833 24.5449i 0 65.1778 0 −0.965298 0
79.8 0 9.05347i 0 4.74833 + 24.5449i 0 −65.1778 0 −0.965298 0
79.9 0 1.21614i 0 −13.8839 + 20.7903i 0 −1.36246 0 79.5210 0
79.10 0 1.21614i 0 13.8839 20.7903i 0 1.36246 0 79.5210 0
79.11 0 1.21614i 0 −13.8839 20.7903i 0 −1.36246 0 79.5210 0
79.12 0 1.21614i 0 13.8839 + 20.7903i 0 1.36246 0 79.5210 0
79.13 0 9.05347i 0 −4.74833 + 24.5449i 0 65.1778 0 −0.965298 0
79.14 0 9.05347i 0 4.74833 24.5449i 0 −65.1778 0 −0.965298 0
79.15 0 10.2033i 0 −17.9141 17.4381i 0 84.8600 0 −23.1073 0
79.16 0 10.2033i 0 17.9141 + 17.4381i 0 −84.8600 0 −23.1073 0
79.17 0 10.5360i 0 −24.9415 1.70938i 0 −26.0178 0 −30.0072 0
79.18 0 10.5360i 0 24.9415 + 1.70938i 0 26.0178 0 −30.0072 0
79.19 0 16.4147i 0 −15.0565 + 19.9575i 0 −3.44277 0 −188.441 0
79.20 0 16.4147i 0 15.0565 19.9575i 0 3.44277 0 −188.441 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 79.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
8.d odd 2 1 inner
40.e odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 160.5.e.c 20
4.b odd 2 1 40.5.e.c 20
5.b even 2 1 inner 160.5.e.c 20
5.c odd 4 2 800.5.g.i 20
8.b even 2 1 40.5.e.c 20
8.d odd 2 1 inner 160.5.e.c 20
20.d odd 2 1 40.5.e.c 20
20.e even 4 2 200.5.g.i 20
40.e odd 2 1 inner 160.5.e.c 20
40.f even 2 1 40.5.e.c 20
40.i odd 4 2 200.5.g.i 20
40.k even 4 2 800.5.g.i 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.5.e.c 20 4.b odd 2 1
40.5.e.c 20 8.b even 2 1
40.5.e.c 20 20.d odd 2 1
40.5.e.c 20 40.f even 2 1
160.5.e.c 20 1.a even 1 1 trivial
160.5.e.c 20 5.b even 2 1 inner
160.5.e.c 20 8.d odd 2 1 inner
160.5.e.c 20 40.e odd 2 1 inner
200.5.g.i 20 20.e even 4 2
200.5.g.i 20 40.i odd 4 2
800.5.g.i 20 5.c odd 4 2
800.5.g.i 20 40.k even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{5}^{\mathrm{new}}(160, [\chi])\):

\( T_{3}^{10} + 568T_{3}^{8} + 110072T_{3}^{6} + 8973408T_{3}^{4} + 268259472T_{3}^{2} + 377478144 \) Copy content Toggle raw display
\( T_{7}^{10} - 12140T_{7}^{8} + 38508440T_{7}^{6} - 21234252160T_{7}^{4} + 284733514000T_{7}^{2} - 455625000000 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} \) Copy content Toggle raw display
$3$ \( (T^{10} + 568 T^{8} + \cdots + 377478144)^{2} \) Copy content Toggle raw display
$5$ \( T^{20} + \cdots + 90\!\cdots\!25 \) Copy content Toggle raw display
$7$ \( (T^{10} + \cdots - 455625000000)^{2} \) Copy content Toggle raw display
$11$ \( (T^{5} - 42 T^{4} + \cdots + 14097087072)^{4} \) Copy content Toggle raw display
$13$ \( (T^{10} + \cdots - 87\!\cdots\!00)^{2} \) Copy content Toggle raw display
$17$ \( (T^{10} + \cdots + 17\!\cdots\!64)^{2} \) Copy content Toggle raw display
$19$ \( (T^{5} + 182 T^{4} + \cdots + 73451402848)^{4} \) Copy content Toggle raw display
$23$ \( (T^{10} + \cdots - 12\!\cdots\!00)^{2} \) Copy content Toggle raw display
$29$ \( (T^{10} + \cdots + 57\!\cdots\!00)^{2} \) Copy content Toggle raw display
$31$ \( (T^{10} + \cdots + 49\!\cdots\!00)^{2} \) Copy content Toggle raw display
$37$ \( (T^{10} + \cdots - 38\!\cdots\!00)^{2} \) Copy content Toggle raw display
$41$ \( (T^{5} + \cdots - 439327012557312)^{4} \) Copy content Toggle raw display
$43$ \( (T^{10} + \cdots + 25\!\cdots\!04)^{2} \) Copy content Toggle raw display
$47$ \( (T^{10} + \cdots - 23\!\cdots\!00)^{2} \) Copy content Toggle raw display
$53$ \( (T^{10} + \cdots - 43\!\cdots\!00)^{2} \) Copy content Toggle raw display
$59$ \( (T^{5} + \cdots - 23\!\cdots\!52)^{4} \) Copy content Toggle raw display
$61$ \( (T^{10} + \cdots + 13\!\cdots\!00)^{2} \) Copy content Toggle raw display
$67$ \( (T^{10} + \cdots + 26\!\cdots\!64)^{2} \) Copy content Toggle raw display
$71$ \( (T^{10} + \cdots + 41\!\cdots\!00)^{2} \) Copy content Toggle raw display
$73$ \( (T^{10} + \cdots + 97\!\cdots\!64)^{2} \) Copy content Toggle raw display
$79$ \( (T^{10} + \cdots + 17\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( (T^{10} + \cdots + 21\!\cdots\!24)^{2} \) Copy content Toggle raw display
$89$ \( (T^{5} + \cdots - 40\!\cdots\!28)^{4} \) Copy content Toggle raw display
$97$ \( (T^{10} + \cdots + 11\!\cdots\!44)^{2} \) Copy content Toggle raw display
show more
show less