Properties

Label 160.5.e.c
Level 160160
Weight 55
Character orbit 160.e
Analytic conductor 16.53916.539
Analytic rank 00
Dimension 2020
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,5,Mod(79,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.79");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: N N == 160=255 160 = 2^{5} \cdot 5
Weight: k k == 5 5
Character orbit: [χ][\chi] == 160.e (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 16.539194093416.5391940934
Analytic rank: 00
Dimension: 2020
Coefficient field: Q[x]/(x20+)\mathbb{Q}[x]/(x^{20} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x20+10x1820x16+2640x14+22400x12652288x10+5734400x8++1099511627776 x^{20} + 10 x^{18} - 20 x^{16} + 2640 x^{14} + 22400 x^{12} - 652288 x^{10} + 5734400 x^{8} + \cdots + 1099511627776 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 27055 2^{70}\cdot 5^{5}
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β191,\beta_1,\ldots,\beta_{19} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ4q3+β2q5β8q7+(β133)q9+(β3+8)q11+(β16β8+β2)q13+(β11β9β6)q15++(β710β5++3168)q99+O(q100) q - \beta_{4} q^{3} + \beta_{2} q^{5} - \beta_{8} q^{7} + ( - \beta_1 - 33) q^{9} + (\beta_{3} + 8) q^{11} + ( - \beta_{16} - \beta_{8} + \beta_{2}) q^{13} + ( - \beta_{11} - \beta_{9} - \beta_{6}) q^{15}+ \cdots + (\beta_{7} - 10 \beta_{5} + \cdots + 3168) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q652q9+168q11728q191420q254440q354728q41+540q494352q518280q59+9480q65+16000q7510956q81+22248q89+39760q91+62504q99+O(q100) 20 q - 652 q^{9} + 168 q^{11} - 728 q^{19} - 1420 q^{25} - 4440 q^{35} - 4728 q^{41} + 540 q^{49} - 4352 q^{51} - 8280 q^{59} + 9480 q^{65} + 16000 q^{75} - 10956 q^{81} + 22248 q^{89} + 39760 q^{91} + 62504 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x20+10x1820x16+2640x14+22400x12652288x10+5734400x8++1099511627776 x^{20} + 10 x^{18} - 20 x^{16} + 2640 x^{14} + 22400 x^{12} - 652288 x^{10} + 5734400 x^{8} + \cdots + 1099511627776 : Copy content Toggle raw display

β1\beta_{1}== (1017ν1836986ν16456716ν142402512ν12+43121471651840)/3060164198400 ( - 1017 \nu^{18} - 36986 \nu^{16} - 456716 \nu^{14} - 2402512 \nu^{12} + \cdots - 43121471651840 ) / 3060164198400 Copy content Toggle raw display
β2\beta_{2}== (513ν19+4288ν1815882ν17+45952ν16+566292ν15++905241667043328)/97925254348800 ( - 513 \nu^{19} + 4288 \nu^{18} - 15882 \nu^{17} + 45952 \nu^{16} + 566292 \nu^{15} + \cdots + 905241667043328 ) / 97925254348800 Copy content Toggle raw display
β3\beta_{3}== (3453ν182274ν16+457156ν14+7409392ν12+100437810216960)/3060164198400 ( - 3453 \nu^{18} - 2274 \nu^{16} + 457156 \nu^{14} + 7409392 \nu^{12} + \cdots - 100437810216960 ) / 3060164198400 Copy content Toggle raw display
β4\beta_{4}== (1863ν1912474ν17+307060ν15+3181104ν13++101928163868672ν)/97925254348800 ( 1863 \nu^{19} - 12474 \nu^{17} + 307060 \nu^{15} + 3181104 \nu^{13} + \cdots + 101928163868672 \nu ) / 97925254348800 Copy content Toggle raw display
β5\beta_{5}== (1077ν18+22466ν16212804ν14+1624272ν12+82138240ν10++15418932592640)/765041049600 ( 1077 \nu^{18} + 22466 \nu^{16} - 212804 \nu^{14} + 1624272 \nu^{12} + 82138240 \nu^{10} + \cdots + 15418932592640 ) / 765041049600 Copy content Toggle raw display
β6\beta_{6}== (1387ν194288ν1815918ν1745952ν16+1801308ν15+905241667043328)/48962627174400 ( - 1387 \nu^{19} - 4288 \nu^{18} - 15918 \nu^{17} - 45952 \nu^{16} + 1801308 \nu^{15} + \cdots - 905241667043328 ) / 48962627174400 Copy content Toggle raw display
β7\beta_{7}== (24ν18203ν16+1042ν14+148124ν12587120ν10++1344526090240)/9563013120 ( 24 \nu^{18} - 203 \nu^{16} + 1042 \nu^{14} + 148124 \nu^{12} - 587120 \nu^{10} + \cdots + 1344526090240 ) / 9563013120 Copy content Toggle raw display
β8\beta_{8}== (4579ν19195234ν17+1282884ν15+21725936ν13++511375986130944ν)/97925254348800 ( 4579 \nu^{19} - 195234 \nu^{17} + 1282884 \nu^{15} + 21725936 \nu^{13} + \cdots + 511375986130944 \nu ) / 97925254348800 Copy content Toggle raw display
β9\beta_{9}== (7657ν19+17152ν1899942ν17+183808ν162114868ν15++36 ⁣ ⁣12)/97925254348800 ( 7657 \nu^{19} + 17152 \nu^{18} - 99942 \nu^{17} + 183808 \nu^{16} - 2114868 \nu^{15} + \cdots + 36\!\cdots\!12 ) / 97925254348800 Copy content Toggle raw display
β10\beta_{10}== (171ν19+230336ν185294ν17+2294144ν16++77 ⁣ ⁣16)/32641751449600 ( - 171 \nu^{19} + 230336 \nu^{18} - 5294 \nu^{17} + 2294144 \nu^{16} + \cdots + 77\!\cdots\!16 ) / 32641751449600 Copy content Toggle raw display
β11\beta_{11}== (5225ν1987728ν1860390ν17+496928ν162172980ν15+55 ⁣ ⁣88)/48962627174400 ( 5225 \nu^{19} - 87728 \nu^{18} - 60390 \nu^{17} + 496928 \nu^{16} - 2172980 \nu^{15} + \cdots - 55\!\cdots\!88 ) / 48962627174400 Copy content Toggle raw display
β12\beta_{12}== (1045ν191872ν1812078ν17149792ν16434596ν15++20 ⁣ ⁣60)/9792525434880 ( 1045 \nu^{19} - 1872 \nu^{18} - 12078 \nu^{17} - 149792 \nu^{16} - 434596 \nu^{15} + \cdots + 20\!\cdots\!60 ) / 9792525434880 Copy content Toggle raw display
β13\beta_{13}== (10963ν19+4448ν18+104898ν17+6775232ν16++14 ⁣ ⁣68)/97925254348800 ( - 10963 \nu^{19} + 4448 \nu^{18} + 104898 \nu^{17} + 6775232 \nu^{16} + \cdots + 14\!\cdots\!68 ) / 97925254348800 Copy content Toggle raw display
β14\beta_{14}== (22439ν194288ν18193914ν1745952ν1610390796ν15+905241667043328)/97925254348800 ( 22439 \nu^{19} - 4288 \nu^{18} - 193914 \nu^{17} - 45952 \nu^{16} - 10390796 \nu^{15} + \cdots - 905241667043328 ) / 97925254348800 Copy content Toggle raw display
β15\beta_{15}== (24235ν1953952ν18+673070ν17+2477184ν16+58 ⁣ ⁣40)/97925254348800 ( 24235 \nu^{19} - 53952 \nu^{18} + 673070 \nu^{17} + 2477184 \nu^{16} + \cdots - 58\!\cdots\!40 ) / 97925254348800 Copy content Toggle raw display
β16\beta_{16}== (10317ν19+1072ν18+107298ν17+11488ν16+754492ν15++226310416760832)/24481313587200 ( 10317 \nu^{19} + 1072 \nu^{18} + 107298 \nu^{17} + 11488 \nu^{16} + 754492 \nu^{15} + \cdots + 226310416760832 ) / 24481313587200 Copy content Toggle raw display
β17\beta_{17}== (15027ν19108546ν171086460ν15+1004016ν13++9783935500288ν)/24481313587200 ( 15027 \nu^{19} - 108546 \nu^{17} - 1086460 \nu^{15} + 1004016 \nu^{13} + \cdots + 9783935500288 \nu ) / 24481313587200 Copy content Toggle raw display
β18\beta_{18}== (77731ν19+53952ν181461538ν172477184ν16++58 ⁣ ⁣40)/97925254348800 ( 77731 \nu^{19} + 53952 \nu^{18} - 1461538 \nu^{17} - 2477184 \nu^{16} + \cdots + 58\!\cdots\!40 ) / 97925254348800 Copy content Toggle raw display
β19\beta_{19}== (89337ν19+924474ν172131060ν15+237586896ν13++10 ⁣ ⁣28ν)/97925254348800 ( 89337 \nu^{19} + 924474 \nu^{17} - 2131060 \nu^{15} + 237586896 \nu^{13} + \cdots + 10\!\cdots\!28 \nu ) / 97925254348800 Copy content Toggle raw display
ν\nu== (β192β16β14+β9+β8+β43β2)/128 ( \beta_{19} - 2\beta_{16} - \beta_{14} + \beta_{9} + \beta_{8} + \beta_{4} - 3\beta_{2} ) / 128 Copy content Toggle raw display
ν2\nu^{2}== (β10+β9β8β72β5+β3+5β2+3β164)/64 ( \beta_{10} + \beta_{9} - \beta_{8} - \beta_{7} - 2\beta_{5} + \beta_{3} + 5\beta_{2} + 3\beta _1 - 64 ) / 64 Copy content Toggle raw display
ν3\nu^{3}== (β192β18+2β15+6β14+6β9+10β8+14β2)/32 ( - \beta_{19} - 2 \beta_{18} + 2 \beta_{15} + 6 \beta_{14} + 6 \beta_{9} + 10 \beta_{8} + \cdots - 14 \beta_{2} ) / 32 Copy content Toggle raw display
ν4\nu^{4}== (12β14+2β132β12+28β11+β10+15β915β8++476)/32 ( - 12 \beta_{14} + 2 \beta_{13} - 2 \beta_{12} + 28 \beta_{11} + \beta_{10} + 15 \beta_{9} - 15 \beta_{8} + \cdots + 476 ) / 32 Copy content Toggle raw display
ν5\nu^{5}== (7β19+36β1816β1750β16+12β15+59β14++273β2)/32 ( 7 \beta_{19} + 36 \beta_{18} - 16 \beta_{17} - 50 \beta_{16} + 12 \beta_{15} + 59 \beta_{14} + \cdots + 273 \beta_{2} ) / 32 Copy content Toggle raw display
ν6\nu^{6}== (10β1411β13+19β1250β112β10+89β9+7554)/8 ( 10 \beta_{14} - 11 \beta_{13} + 19 \beta_{12} - 50 \beta_{11} - 2 \beta_{10} + 89 \beta_{9} + \cdots - 7554 ) / 8 Copy content Toggle raw display
ν7\nu^{7}== (163β19+168β18240β17+870β1624β15+1519β2)/16 ( - 163 \beta_{19} + 168 \beta_{18} - 240 \beta_{17} + 870 \beta_{16} - 24 \beta_{15} + \cdots - 1519 \beta_{2} ) / 16 Copy content Toggle raw display
ν8\nu^{8}== (928β14136β13+248β12+1472β11137β1081β9++27488)/8 ( - 928 \beta_{14} - 136 \beta_{13} + 248 \beta_{12} + 1472 \beta_{11} - 137 \beta_{10} - 81 \beta_{9} + \cdots + 27488 ) / 8 Copy content Toggle raw display
ν9\nu^{9}== (177β19+458β18+2480β171044β16+70β15+4696β2)/4 ( - 177 \beta_{19} + 458 \beta_{18} + 2480 \beta_{17} - 1044 \beta_{16} + 70 \beta_{15} + \cdots - 4696 \beta_{2} ) / 4 Copy content Toggle raw display
ν10\nu^{10}== (4356β147002β13+1146β12+564β11+3287β10++1024116)/4 ( - 4356 \beta_{14} - 7002 \beta_{13} + 1146 \beta_{12} + 564 \beta_{11} + 3287 \beta_{10} + \cdots + 1024116 ) / 4 Copy content Toggle raw display
ν11\nu^{11}== (18117β197972β18+10000β177174β16140β15++181659β2)/4 ( 18117 \beta_{19} - 7972 \beta_{18} + 10000 \beta_{17} - 7174 \beta_{16} - 140 \beta_{15} + \cdots + 181659 \beta_{2} ) / 4 Copy content Toggle raw display
ν12\nu^{12}== 10906β14+11203β13+7221β12+25794β11+6968β10+4428974 - 10906 \beta_{14} + 11203 \beta_{13} + 7221 \beta_{12} + 25794 \beta_{11} + 6968 \beta_{10} + \cdots - 4428974 Copy content Toggle raw display
ν13\nu^{13}== (70189β19+45480β1887440β17+8010β16+82248β15+624089β2)/2 ( - 70189 \beta_{19} + 45480 \beta_{18} - 87440 \beta_{17} + 8010 \beta_{16} + 82248 \beta_{15} + \cdots - 624089 \beta_{2} ) / 2 Copy content Toggle raw display
ν14\nu^{14}== 42928β1479744β13127600β12+133712β1188035β10+45264208 - 42928 \beta_{14} - 79744 \beta_{13} - 127600 \beta_{12} + 133712 \beta_{11} - 88035 \beta_{10} + \cdots - 45264208 Copy content Toggle raw display
ν15\nu^{15}== 505386β19+811772β181664032β17+2390000β16++16533708β2 - 505386 \beta_{19} + 811772 \beta_{18} - 1664032 \beta_{17} + 2390000 \beta_{16} + \cdots + 16533708 \beta_{2} Copy content Toggle raw display
ν16\nu^{16}== 2358824β14+5816900β13+828668β12+270584β11666014β10+663272072 2358824 \beta_{14} + 5816900 \beta_{13} + 828668 \beta_{12} + 270584 \beta_{11} - 666014 \beta_{10} + \cdots - 663272072 Copy content Toggle raw display
ν17\nu^{17}== 6097438β1910532152β1811639200β17+67889660β16+127838670β2 6097438 \beta_{19} - 10532152 \beta_{18} - 11639200 \beta_{17} + 67889660 \beta_{16} + \cdots - 127838670 \beta_{2} Copy content Toggle raw display
ν18\nu^{18}== 10785872β1464146136β1318904552β1266813328β11+22223001616 10785872 \beta_{14} - 64146136 \beta_{13} - 18904552 \beta_{12} - 66813328 \beta_{11} + \cdots - 22223001616 Copy content Toggle raw display
ν19\nu^{19}== 102661428β1994971104β18+719474240β17+931615896β16++2188601924β2 102661428 \beta_{19} - 94971104 \beta_{18} + 719474240 \beta_{17} + 931615896 \beta_{16} + \cdots + 2188601924 \beta_{2} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/160Z)×\left(\mathbb{Z}/160\mathbb{Z}\right)^\times.

nn 3131 9797 101101
χ(n)\chi(n) 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
79.1
3.92076 0.792224i
−3.92076 0.792224i
−1.28868 3.78673i
1.28868 3.78673i
0.495691 + 3.96917i
−0.495691 + 3.96917i
−3.42328 + 2.06909i
3.42328 + 2.06909i
2.91588 2.73819i
−2.91588 2.73819i
2.91588 + 2.73819i
−2.91588 + 2.73819i
−3.42328 2.06909i
3.42328 2.06909i
0.495691 3.96917i
−0.495691 3.96917i
−1.28868 + 3.78673i
1.28868 + 3.78673i
3.92076 + 0.792224i
−3.92076 + 0.792224i
0 16.4147i 0 −15.0565 19.9575i 0 −3.44277 0 −188.441 0
79.2 0 16.4147i 0 15.0565 + 19.9575i 0 3.44277 0 −188.441 0
79.3 0 10.5360i 0 −24.9415 + 1.70938i 0 −26.0178 0 −30.0072 0
79.4 0 10.5360i 0 24.9415 1.70938i 0 26.0178 0 −30.0072 0
79.5 0 10.2033i 0 −17.9141 + 17.4381i 0 84.8600 0 −23.1073 0
79.6 0 10.2033i 0 17.9141 17.4381i 0 −84.8600 0 −23.1073 0
79.7 0 9.05347i 0 −4.74833 24.5449i 0 65.1778 0 −0.965298 0
79.8 0 9.05347i 0 4.74833 + 24.5449i 0 −65.1778 0 −0.965298 0
79.9 0 1.21614i 0 −13.8839 + 20.7903i 0 −1.36246 0 79.5210 0
79.10 0 1.21614i 0 13.8839 20.7903i 0 1.36246 0 79.5210 0
79.11 0 1.21614i 0 −13.8839 20.7903i 0 −1.36246 0 79.5210 0
79.12 0 1.21614i 0 13.8839 + 20.7903i 0 1.36246 0 79.5210 0
79.13 0 9.05347i 0 −4.74833 + 24.5449i 0 65.1778 0 −0.965298 0
79.14 0 9.05347i 0 4.74833 24.5449i 0 −65.1778 0 −0.965298 0
79.15 0 10.2033i 0 −17.9141 17.4381i 0 84.8600 0 −23.1073 0
79.16 0 10.2033i 0 17.9141 + 17.4381i 0 −84.8600 0 −23.1073 0
79.17 0 10.5360i 0 −24.9415 1.70938i 0 −26.0178 0 −30.0072 0
79.18 0 10.5360i 0 24.9415 + 1.70938i 0 26.0178 0 −30.0072 0
79.19 0 16.4147i 0 −15.0565 + 19.9575i 0 −3.44277 0 −188.441 0
79.20 0 16.4147i 0 15.0565 19.9575i 0 3.44277 0 −188.441 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 79.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
8.d odd 2 1 inner
40.e odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 160.5.e.c 20
4.b odd 2 1 40.5.e.c 20
5.b even 2 1 inner 160.5.e.c 20
5.c odd 4 2 800.5.g.i 20
8.b even 2 1 40.5.e.c 20
8.d odd 2 1 inner 160.5.e.c 20
20.d odd 2 1 40.5.e.c 20
20.e even 4 2 200.5.g.i 20
40.e odd 2 1 inner 160.5.e.c 20
40.f even 2 1 40.5.e.c 20
40.i odd 4 2 200.5.g.i 20
40.k even 4 2 800.5.g.i 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.5.e.c 20 4.b odd 2 1
40.5.e.c 20 8.b even 2 1
40.5.e.c 20 20.d odd 2 1
40.5.e.c 20 40.f even 2 1
160.5.e.c 20 1.a even 1 1 trivial
160.5.e.c 20 5.b even 2 1 inner
160.5.e.c 20 8.d odd 2 1 inner
160.5.e.c 20 40.e odd 2 1 inner
200.5.g.i 20 20.e even 4 2
200.5.g.i 20 40.i odd 4 2
800.5.g.i 20 5.c odd 4 2
800.5.g.i 20 40.k even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S5new(160,[χ])S_{5}^{\mathrm{new}}(160, [\chi]):

T310+568T38+110072T36+8973408T34+268259472T32+377478144 T_{3}^{10} + 568T_{3}^{8} + 110072T_{3}^{6} + 8973408T_{3}^{4} + 268259472T_{3}^{2} + 377478144 Copy content Toggle raw display
T71012140T78+38508440T7621234252160T74+284733514000T72455625000000 T_{7}^{10} - 12140T_{7}^{8} + 38508440T_{7}^{6} - 21234252160T_{7}^{4} + 284733514000T_{7}^{2} - 455625000000 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T20 T^{20} Copy content Toggle raw display
33 (T10+568T8++377478144)2 (T^{10} + 568 T^{8} + \cdots + 377478144)^{2} Copy content Toggle raw display
55 T20++90 ⁣ ⁣25 T^{20} + \cdots + 90\!\cdots\!25 Copy content Toggle raw display
77 (T10+455625000000)2 (T^{10} + \cdots - 455625000000)^{2} Copy content Toggle raw display
1111 (T542T4++14097087072)4 (T^{5} - 42 T^{4} + \cdots + 14097087072)^{4} Copy content Toggle raw display
1313 (T10+87 ⁣ ⁣00)2 (T^{10} + \cdots - 87\!\cdots\!00)^{2} Copy content Toggle raw display
1717 (T10++17 ⁣ ⁣64)2 (T^{10} + \cdots + 17\!\cdots\!64)^{2} Copy content Toggle raw display
1919 (T5+182T4++73451402848)4 (T^{5} + 182 T^{4} + \cdots + 73451402848)^{4} Copy content Toggle raw display
2323 (T10+12 ⁣ ⁣00)2 (T^{10} + \cdots - 12\!\cdots\!00)^{2} Copy content Toggle raw display
2929 (T10++57 ⁣ ⁣00)2 (T^{10} + \cdots + 57\!\cdots\!00)^{2} Copy content Toggle raw display
3131 (T10++49 ⁣ ⁣00)2 (T^{10} + \cdots + 49\!\cdots\!00)^{2} Copy content Toggle raw display
3737 (T10+38 ⁣ ⁣00)2 (T^{10} + \cdots - 38\!\cdots\!00)^{2} Copy content Toggle raw display
4141 (T5+439327012557312)4 (T^{5} + \cdots - 439327012557312)^{4} Copy content Toggle raw display
4343 (T10++25 ⁣ ⁣04)2 (T^{10} + \cdots + 25\!\cdots\!04)^{2} Copy content Toggle raw display
4747 (T10+23 ⁣ ⁣00)2 (T^{10} + \cdots - 23\!\cdots\!00)^{2} Copy content Toggle raw display
5353 (T10+43 ⁣ ⁣00)2 (T^{10} + \cdots - 43\!\cdots\!00)^{2} Copy content Toggle raw display
5959 (T5+23 ⁣ ⁣52)4 (T^{5} + \cdots - 23\!\cdots\!52)^{4} Copy content Toggle raw display
6161 (T10++13 ⁣ ⁣00)2 (T^{10} + \cdots + 13\!\cdots\!00)^{2} Copy content Toggle raw display
6767 (T10++26 ⁣ ⁣64)2 (T^{10} + \cdots + 26\!\cdots\!64)^{2} Copy content Toggle raw display
7171 (T10++41 ⁣ ⁣00)2 (T^{10} + \cdots + 41\!\cdots\!00)^{2} Copy content Toggle raw display
7373 (T10++97 ⁣ ⁣64)2 (T^{10} + \cdots + 97\!\cdots\!64)^{2} Copy content Toggle raw display
7979 (T10++17 ⁣ ⁣00)2 (T^{10} + \cdots + 17\!\cdots\!00)^{2} Copy content Toggle raw display
8383 (T10++21 ⁣ ⁣24)2 (T^{10} + \cdots + 21\!\cdots\!24)^{2} Copy content Toggle raw display
8989 (T5+40 ⁣ ⁣28)4 (T^{5} + \cdots - 40\!\cdots\!28)^{4} Copy content Toggle raw display
9797 (T10++11 ⁣ ⁣44)2 (T^{10} + \cdots + 11\!\cdots\!44)^{2} Copy content Toggle raw display
show more
show less