L(s) = 1 | − 9.05i·3-s + (−4.74 − 24.5i)5-s + 65.1·7-s − 0.965·9-s + 220.·11-s − 75.1·13-s + (−222. + 42.9i)15-s − 341. i·17-s + 59.8·19-s − 590. i·21-s − 449.·23-s + (−579. + 233. i)25-s − 724. i·27-s + 977. i·29-s − 89.3i·31-s + ⋯ |
L(s) = 1 | − 1.00i·3-s + (−0.189 − 0.981i)5-s + 1.33·7-s − 0.0119·9-s + 1.81·11-s − 0.444·13-s + (−0.987 + 0.191i)15-s − 1.18i·17-s + 0.165·19-s − 1.33i·21-s − 0.848·23-s + (−0.927 + 0.372i)25-s − 0.993i·27-s + 1.16i·29-s − 0.0930i·31-s + ⋯ |
Λ(s)=(=(160s/2ΓC(s)L(s)(−0.345+0.938i)Λ(5−s)
Λ(s)=(=(160s/2ΓC(s+2)L(s)(−0.345+0.938i)Λ(1−s)
Degree: |
2 |
Conductor: |
160
= 25⋅5
|
Sign: |
−0.345+0.938i
|
Analytic conductor: |
16.5391 |
Root analytic conductor: |
4.06684 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ160(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 160, ( :2), −0.345+0.938i)
|
Particular Values
L(25) |
≈ |
1.25303−1.79620i |
L(21) |
≈ |
1.25303−1.79620i |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(4.74+24.5i)T |
good | 3 | 1+9.05iT−81T2 |
| 7 | 1−65.1T+2.40e3T2 |
| 11 | 1−220.T+1.46e4T2 |
| 13 | 1+75.1T+2.85e4T2 |
| 17 | 1+341.iT−8.35e4T2 |
| 19 | 1−59.8T+1.30e5T2 |
| 23 | 1+449.T+2.79e5T2 |
| 29 | 1−977.iT−7.07e5T2 |
| 31 | 1+89.3iT−9.23e5T2 |
| 37 | 1+1.48e3T+1.87e6T2 |
| 41 | 1−1.55e3T+2.82e6T2 |
| 43 | 1−245.iT−3.41e6T2 |
| 47 | 1+180.T+4.87e6T2 |
| 53 | 1+1.24e3T+7.89e6T2 |
| 59 | 1−4.05e3T+1.21e7T2 |
| 61 | 1+3.52e3iT−1.38e7T2 |
| 67 | 1+3.15e3iT−2.01e7T2 |
| 71 | 1−5.61e3iT−2.54e7T2 |
| 73 | 1−2.40e3iT−2.83e7T2 |
| 79 | 1−3.92e3iT−3.89e7T2 |
| 83 | 1−7.72e3iT−4.74e7T2 |
| 89 | 1+4.58e3T+6.27e7T2 |
| 97 | 1−2.35e3iT−8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.96409141109020663083231532299, −11.38323464294206876182760576826, −9.611656793132337134041806913358, −8.646232718404661463420982128475, −7.68576354622029040844503071167, −6.75872261031382185871641627364, −5.22344183722650459729982530236, −4.14940778447766177556520834056, −1.81218388774105864751531978494, −0.959677945508520984684914031354,
1.77063943422811775685127513364, 3.74207696618920689716302825567, 4.44326426306121711087363683282, 6.02054833407971857167847747032, 7.27505506578439355350797623365, 8.456144482677829230119699963696, 9.647759915907638705395035805085, 10.51854921037599929382100348941, 11.38131623897420597271944748200, 12.11368985462837262840458749872