L(s) = 1 | − 9.05i·3-s + (−4.74 − 24.5i)5-s + 65.1·7-s − 0.965·9-s + 220.·11-s − 75.1·13-s + (−222. + 42.9i)15-s − 341. i·17-s + 59.8·19-s − 590. i·21-s − 449.·23-s + (−579. + 233. i)25-s − 724. i·27-s + 977. i·29-s − 89.3i·31-s + ⋯ |
L(s) = 1 | − 1.00i·3-s + (−0.189 − 0.981i)5-s + 1.33·7-s − 0.0119·9-s + 1.81·11-s − 0.444·13-s + (−0.987 + 0.191i)15-s − 1.18i·17-s + 0.165·19-s − 1.33i·21-s − 0.848·23-s + (−0.927 + 0.372i)25-s − 0.993i·27-s + 1.16i·29-s − 0.0930i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.345 + 0.938i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.345 + 0.938i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(1.25303 - 1.79620i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.25303 - 1.79620i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (4.74 + 24.5i)T \) |
good | 3 | \( 1 + 9.05iT - 81T^{2} \) |
| 7 | \( 1 - 65.1T + 2.40e3T^{2} \) |
| 11 | \( 1 - 220.T + 1.46e4T^{2} \) |
| 13 | \( 1 + 75.1T + 2.85e4T^{2} \) |
| 17 | \( 1 + 341. iT - 8.35e4T^{2} \) |
| 19 | \( 1 - 59.8T + 1.30e5T^{2} \) |
| 23 | \( 1 + 449.T + 2.79e5T^{2} \) |
| 29 | \( 1 - 977. iT - 7.07e5T^{2} \) |
| 31 | \( 1 + 89.3iT - 9.23e5T^{2} \) |
| 37 | \( 1 + 1.48e3T + 1.87e6T^{2} \) |
| 41 | \( 1 - 1.55e3T + 2.82e6T^{2} \) |
| 43 | \( 1 - 245. iT - 3.41e6T^{2} \) |
| 47 | \( 1 + 180.T + 4.87e6T^{2} \) |
| 53 | \( 1 + 1.24e3T + 7.89e6T^{2} \) |
| 59 | \( 1 - 4.05e3T + 1.21e7T^{2} \) |
| 61 | \( 1 + 3.52e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 + 3.15e3iT - 2.01e7T^{2} \) |
| 71 | \( 1 - 5.61e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 - 2.40e3iT - 2.83e7T^{2} \) |
| 79 | \( 1 - 3.92e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 - 7.72e3iT - 4.74e7T^{2} \) |
| 89 | \( 1 + 4.58e3T + 6.27e7T^{2} \) |
| 97 | \( 1 - 2.35e3iT - 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.96409141109020663083231532299, −11.38323464294206876182760576826, −9.611656793132337134041806913358, −8.646232718404661463420982128475, −7.68576354622029040844503071167, −6.75872261031382185871641627364, −5.22344183722650459729982530236, −4.14940778447766177556520834056, −1.81218388774105864751531978494, −0.959677945508520984684914031354,
1.77063943422811775685127513364, 3.74207696618920689716302825567, 4.44326426306121711087363683282, 6.02054833407971857167847747032, 7.27505506578439355350797623365, 8.456144482677829230119699963696, 9.647759915907638705395035805085, 10.51854921037599929382100348941, 11.38131623897420597271944748200, 12.11368985462837262840458749872