L(s) = 1 | − 10.2i·3-s + (17.9 − 17.4i)5-s − 84.8·7-s − 23.1·9-s − 71.3·11-s − 109.·13-s + (−177. − 182. i)15-s + 151. i·17-s + 368.·19-s + 865. i·21-s − 358.·23-s + (16.8 − 624. i)25-s − 590. i·27-s + 387. i·29-s + 1.68e3i·31-s + ⋯ |
L(s) = 1 | − 1.13i·3-s + (0.716 − 0.697i)5-s − 1.73·7-s − 0.285·9-s − 0.589·11-s − 0.646·13-s + (−0.790 − 0.812i)15-s + 0.523i·17-s + 1.02·19-s + 1.96i·21-s − 0.676·23-s + (0.0269 − 0.999i)25-s − 0.810i·27-s + 0.460i·29-s + 1.75i·31-s + ⋯ |
Λ(s)=(=(160s/2ΓC(s)L(s)(−0.780−0.624i)Λ(5−s)
Λ(s)=(=(160s/2ΓC(s+2)L(s)(−0.780−0.624i)Λ(1−s)
Degree: |
2 |
Conductor: |
160
= 25⋅5
|
Sign: |
−0.780−0.624i
|
Analytic conductor: |
16.5391 |
Root analytic conductor: |
4.06684 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ160(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 160, ( :2), −0.780−0.624i)
|
Particular Values
L(25) |
≈ |
0.167450+0.477457i |
L(21) |
≈ |
0.167450+0.477457i |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−17.9+17.4i)T |
good | 3 | 1+10.2iT−81T2 |
| 7 | 1+84.8T+2.40e3T2 |
| 11 | 1+71.3T+1.46e4T2 |
| 13 | 1+109.T+2.85e4T2 |
| 17 | 1−151.iT−8.35e4T2 |
| 19 | 1−368.T+1.30e5T2 |
| 23 | 1+358.T+2.79e5T2 |
| 29 | 1−387.iT−7.07e5T2 |
| 31 | 1−1.68e3iT−9.23e5T2 |
| 37 | 1+1.15e3T+1.87e6T2 |
| 41 | 1+2.54e3T+2.82e6T2 |
| 43 | 1+1.35e3iT−3.41e6T2 |
| 47 | 1+901.T+4.87e6T2 |
| 53 | 1+3.40e3T+7.89e6T2 |
| 59 | 1−1.45e3T+1.21e7T2 |
| 61 | 1+5.32e3iT−1.38e7T2 |
| 67 | 1−657.iT−2.01e7T2 |
| 71 | 1+6.74e3iT−2.54e7T2 |
| 73 | 1−4.13e3iT−2.83e7T2 |
| 79 | 1+2.30e3iT−3.89e7T2 |
| 83 | 1−2.14e3iT−4.74e7T2 |
| 89 | 1−5.11e3T+6.27e7T2 |
| 97 | 1+9.16e3iT−8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.28392788282711924923646457859, −10.28678013216100631515210290454, −9.633611130069341825072229875556, −8.436278327604428446927356029757, −7.13385187525417763573819307870, −6.35784458249013753850175184130, −5.20719071277198823039279497246, −3.18681882498454037845828943716, −1.72602965161872832352622484820, −0.18151695912672010656135035554,
2.66883107020314396175123663635, 3.64215788105555989789201969431, 5.21202061316519386308961140350, 6.31221508928891963700396825934, 7.42355547421159676252372240396, 9.326848207539226517462108199509, 9.863249492008954125013468974274, 10.32094542274548057133967279960, 11.67087755936826612467748901875, 12.99587414395181417205107410465